To make sure the safety, durability, and serviceability of structures in-service, health monitoring systems (HMS) are widely used in management of civil infrastructures in recent years. Compared with traditional force sensors, lead zirconium titanate (PZT) sensor performs better in smart sensing in HMS with advantages of high sensitivity, self-powering and fast response to highly dynamic load. Here, we propose to utilize PZT sensor arrays to identify the position and magnitude of external loads that are applied on a simply supported beam. An identification method is proposed based on experimental tests and theoretical electromechanical analyses, which is proved effective by comparing the identified parameters with the actually applied loading conditions and signals recorded by commercial force sensors. Experimental observations also reveal that PZT sensors respond faster to loading process than commercial force sensor, which makes it qualified in identification of transient loading such as impact processing in loading history. Results also demonstrate the applicability of the method to identify multiple concentrated load and the average moving speed of the applied load. The current method may provide a useful tool for identifying load conditions on various beam structures.

References

1.
Zhang
,
Y. Z.
,
Anderson
,
N.
,
Bland
,
S.
,
Nutt
,
S.
,
Jursich
,
G.
, and Joshi, S.,
2017
, “
All-Printed Strain Sensors: Building Blocks of the Aircraft Structural Health Monitoring System
,”
Sens. Actuators A
,
253
, pp.
165
172
.
2.
Hahn
,
H. G.
, and
Ahn
,
H. J.
,
2012
, “
A Study on Development of Structural Health Monitoring System for Steel Beams Using Strain Gauges
,”
J. Korea Inst. Struct. Maint. Insp.
,
16
(
1
), pp.
99
109
.
3.
Vafaei, M., and Alih, S. C., 2015, “
An Ideal Strain Gage Placement Plan for Structural Health Monitoring Under Seismic Loadings
,”
Earthquakes and Structures
,
8
(3), pp. 541–553.
4.
Li
,
X. D.
,
Li
,
S. L.
,
Zhong
,
S. L.
, and
Ge
,
S.
,
2013
, “
Comparison Analysis of Fiber Bragg Grating and Resistance Strain Gauge Used in Quayside Container Crane Structural Health Monitoring
,”
Appl. Mech. Mater.
,
330
(
330
), pp.
485
493
.
5.
Sirohi
,
J.
,
1999
, “
Fundamental Understanding of Piezoelectric Strain Sensors
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
246
257
.
6.
Yi
,
J. H.
,
2015
, “
Temperature Dependence of Zero Point in Force Transducers: Material Properties of Strain Gages Causing Such Dependence
,”
Exp. Tech.
,
38
(
5
), pp.
64
69
.
7.
Wang
,
Y. J.
,
Chen
,
T. Y.
,
Tsai
,
M. C.
, and
Wu
,
C. H.
,
2016
, “
Noninvasive Blood Pressure Monitor Using Strain Gauges, a Fastening Band, and a Wrist Elasticity Model
,”
Sens. Actuators A
,
252
, pp.
198
208
.
8.
Sim
,
M. Y.
,
Lee
,
K. H.
,
Jeong
,
Y.
,
Shin
,
J. H.
,
Sohn
,
J. I.
,
Cha
,
S. N.
, and
Jang
,
J. E.
,
2016
, “
Structural Solution to Enhance the Sensitivity of a Self-Powered Pressure Sensor for an Artificial Tactile System
,”
IEEE Trans. Nanobioscience
,
15
(
8
), pp.
804
811
.
9.
Motoo
,
K.
,
Arai
,
F.
,
Fukuda
,
T.
,
Katsuragi
,
T.
, and
Itoigawa
,
K.
,
2006
, “
High Sensitive Touch Sensor With Piezoelectric Thin Film for Pipetting Works Under Microscope
,”
Sens. Actuators A
,
126
(
1
), pp.
1
6
.
10.
Babaev
,
A. S.
, and
Yanchevskii
,
I. V.
,
2013
, “
Identification of External Load and Control of Deformed State of an Asymmetric Trimorphic Beam in Unsteady Modes
,”
Mech. Solids
,
48
(
6
), pp.
697
705
.
11.
Zhang
,
Y. Y.
,
Chen
,
Y. S.
,
Lu
,
B. W.
,
,
C. F.
, and
Feng
,
X.
,
2016
, “
Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061007
.
12.
Lu
,
B. W.
,
Chen
,
Y.
,
Ou
,
D. P.
,
Chen
,
H.
,
Diao
,
L. W.
,
Zhang
,
W.
,
Zheng
,
J.
,
Ma
,
W. G.
,
Sun
,
L. Z.
, and
Feng
,
X.
,
2015
, “
Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy
,”
Sci. Rep.
,
5
, p.
16065
.
13.
Chen
,
Y. S.
,
Zhang
,
H.
,
Zhang
,
Y. Y.
,
Li
,
C. H.
,
Yang
,
Q.
, and
Zheng
,
H. Y.
,
2016
, “
Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081001
.
14.
Wang
,
X. D.
, and
Huang
,
G. L.
,
2006
, “
The Coupled Dynamic Behavior of Piezoelectric Sensors Bonded to Elastic Media
,”
J. Intell. Mater. Syst. Struct.
,
17
(
10
), pp.
883
894
.
15.
Wang
,
J. H.
, and
Chen
,
C. Q.
,
2017
, “
Effects of Thickness on the Responses of Piezoresponse Force Microscopy for Piezoelectric Film/Substrate Systems
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121004
.
16.
Mortet
,
V.
,
Petersen
,
R.
,
Haenen
,
K.
, and
Dolieslaeger
,
M.
,
2006
, “
Wide Range Pressure Sensor Based on a Piezoelectric Bimorph Microcantilever
,”
Appl. Phys. Lett.
,
88
(
13
), p.
133511
.
17.
Yuan
,
J. H.
,
Shi
,
Y.
,
Pharr
,
M.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2016
, “
A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Eermis
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
084501
.
18.
Maroufi
,
M.
, and
Shamshirsaz
,
M.
,
2015
, “
Resonant Behavior Study of PZT Sensor Partially Immersed in Liquid Using PSO Method: Modeling and Experiment
,”
Analog Integr. Circuits Signal Process.
,
82
(
3
), pp.
583
597
.
19.
Xu
,
D. Y.
,
Cheng
,
X.
,
Huang
,
S. F.
, and
Jiang
,
M. H.
,
2010
, “
Identifying Technology for Structural Damage Based on the Impedance Analysis of Piezoelectric Sensor
,”
Constr. Build. Mater.
,
24
(
12
), pp.
2522
2527
.
20.
Shi
,
Y.
,
Dagdeviren
,
C.
,
Rogers
,
J. A.
,
Gao
,
C. F.
, and
Huang
,
Y.
,
2015
, “
An Analytic Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091007
.
21.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121003
.
22.
Muralt
,
P.
,
Polcawich
,
R. G.
, and
Trolier-Mckinstry
,
S.
,
2009
, “
Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting
,”
MRS Bull.
,
34
(
9
), pp.
658
664
.
23.
Jiang
,
X. Y.
,
Zou
,
H. X.
, and
Zhang
,
W. M.
,
2017
, “
Design and Analysis of a Multi-Step Piezoelectric Energy Harvester Using Buckled Beam Driven by Magnetic Excitation
,”
Energy Convers. Manage.
,
145
, pp.
129
137
.
24.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121005
.
25.
Lu
,
Y.
,
Su
,
Z.
, and
Ye
,
L.
,
2006
, “
Crack Identification in Aluminium Plates Using Lamb Wave Signals of a PZT Sensor Network
,”
Smart Mater. Struct.
,
15
(
3
), pp.
839
849
.
26.
Jinesh
,
N.
, and
Shankar
,
K.
,
2017
, “
Identification of Structural Parameters Including Crack Using One Dimensional PZT Patch Model
,”
Inverse Probl. Sci. Eng.
,
25
(
8
), pp.
1216
1241
.
27.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science Publishers
,
New York
.
You do not currently have access to this content.