Swelling and crack propagation in ionized hydrogels plays an important role in industry application of personal care and biotechnology. Unlike nonionized hydrogel, ionized hydrogel swells up to strain of many 1000's %. In this paper, we present a swelling driven fracture model for ionized hydrogel in large deformation. Flow of fluid within the crack, within the medium, and between the crack and the medium are accounted for. The partition of unity method is used to describe the discontinuous displacement field and chemical potential field, respectively. In order to capture the chemical potential gradient between the gel and the crack, an enhanced local pressure (ELP) model is adopted. The capacity of this numerical model to study the fracture and swelling behaviors of ionized gels with low Young's modulus (< 1 MPa) and low permeability (< 10−16 m4/Ns) is demonstrated. Two numerical examples show the performance of the implemented model (1) swelling with crack opening and (2) swelling with crack propagation. Simulations demonstrate that shrinking of a gel results in decreasing macroscopic stress and simultaneously increasing stress at crack tips. Different scales yield opposite responses, underscoring the need for multiscale modelling. While cracking as a result of external loading can be prevented by reducing the overall stress level in the structure, reducing overall stress levels will not result in reducing the crack initiation and propagation due to swelling.

References

1.
Cadman
,
J. E.
,
Zhou
,
S.
,
Chen
,
Y.
, and
Li
,
Q.
,
2013
, “
On Design of Multi-Functional Microstructural Materials
,”
J. Mater. Sci
,
48
(
1
), pp.
51
66
.
2.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci
,
35
(
8
), pp.
793
802
.
3.
Lanir
,
Y.
,
Seybold
,
J.
,
Schneiderman
,
R.
, and
Huyghe
,
J. M.
,
1998
, “
Partition and Diffusion of Sodium and Chloride Ions in Soft Charged Foam: The Effect of External Salt Concentration and Mechanical Deformation
,”
Tissue Eng.
,
4
(
4
), pp.
365
378
.
4.
Frijns
,
A. J. H.
,
Huyghe
,
J. M.
, and
Wijlaars
,
M. W.
,
2005
, “
Measurements of Deformations and Electrical Potentials in a Charged Porous Medium
,”
IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media
(Solid Mechanics and Its Applications), Vol. 125, Springer, Dordrecht, The Netherlands, pp. 133–139.
5.
Ding
,
J.
,
Remmers
,
J. J. C.
,
Malakpoor
,
K.
, and
Huyghe
,
J. M.
, eds.,
2017
,
Swelling Driven Cracking in Large Deformation in Porous Media
,
American Society of Civil Engineers
, Reston, VA.
6.
Yu
,
C.
,
Malakpoor
,
K.
,
Leszczynski
,
S.
, and Huyghe,
J. M.
, eds.,
2017
,
A Full 3D Mixed Hybrid Finite Element Model of Superabsorbent Polymers
,
American Society of Civil Engineers
, Reston, VA.
7.
Flory
,
P.
,
1953
, “
George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University
,”
Principles of Polymer Chemistry
,
Cornell University Press
,
Ithaca, NY
.
8.
Duda
,
F. P.
,
Souza
,
A. C.
, and
Fried
,
E.
,
2010
, “
A Theory for Species Migration in a Finitely Strained Solid With Application to Polymer Network Swelling
,”
J. Mech. Phys. Solids
,
58
(
4
), pp.
515
529
.
9.
Baek
,
S.
, and
Pence
,
T. J.
,
2011
, “
Inhomogeneous Deformation of Elastomer Gels in Equilibrium Under Saturated and Unsaturated Conditions
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
561
582
.
10.
Chester
,
S. A.
, and
Anand
,
L.
,
2011
, “
A Thermo-Mechanically Coupled Theory for Fluid Permeation in Elastomeric Materials: Application to Thermally Responsive Gels
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
1978
2006
.
11.
Selvadurai
,
A. P.
, and
Suvorov
,
A. P.
,
2016
, “
Coupled Hydro-Mechanical Effects in a Poro-Hyperelastic Material
,”
J. Mech. Phys. Solids
,
91
, pp.
311
333
.
12.
Peppas
,
N.
, and
Mikos
,
A.
,
1986
,
Preparation Methods and Structure of Hydrogels
, Vol.
1
,
CRC Press
,
Boca Raton, FL
.
13.
Wognum
,
S.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P. T.
,
2006
, “
Influence of Osmotic Pressure Changes on the Opening of Existing Cracks in 2 Intervertebral Disc Models
,”
Spine
,
31
(
16
), pp.
1783
1788
.
14.
Lee
,
J. N.
,
Park
,
C.
, and
Whitesides
,
G. M.
,
2003
, “
Solvent Compatibility of Poly(Dimethylsiloxane)-Based Microfluidic Devices
,”
Anal. Chem
,
75
(
23
), pp.
6544
6554
.
15.
Bertrand
,
T.
,
Peixinho
,
J.
,
Mukhopadhyay
,
S.
, and
Macminn
,
C. W.
,
2016
, “
Dynamics of Swelling and Drying in a Spherical Gel
,” e-print
arXiv:1605.00599
.https://arxiv.org/abs/1605.00599
16.
Tanaka
,
T.
,
Sun
,
S.-T.
,
Hirokawa
,
Y.
,
Katayama
,
S.
,
Kucera
,
J.
,
Hirose
,
Y.
, and
Amiya
,
T.
,
1987
, “
Mechanical Instability of Gels at the Phase Transition
,”
Nature
,
325
, pp.
796
798
.
17.
Holmes
,
D. P.
,
Roché
,
M.
,
Sinha
,
T.
, and
Stone
,
H. A.
,
2011
, “
Bending and Twisting of Soft Materials by Non-Homogenous Swelling
,”
Soft Matter
,
7
(
11
), p.
5188
.
18.
Kraaijeveld
,
F.
,
2009
, “
Propagating Discontinuities in Ionized Porous Media
,”
Ph.D. thesis
, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.http://repository.tue.nl/652157
19.
Moulinet
,
S.
, and
Adda-Bedia
,
M.
,
2015
, “
Popping Balloons: A Case Study of Dynamical Fragmentation
,”
Phys. Rev. Lett.
,
115
(
18
), p. 184301.
20.
Tjeerdsma
,
B. F.
,
Boonstra
,
M.
,
Pizzi
,
A.
,
Tekely
,
P.
, and
Militz
,
H.
,
1998
, “
Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement
,”
Holz Als Roh-Werkstoff
,
56
, pp.
149
153
.
21.
Jurkovich
,
G. J.
,
2007
, “
Environmental Cold-Induced Injury
,”
Surg. Clin. North Am.
,
87
(
1
), pp.
247
267
.
22.
Miller
,
S. A.
,
Collettini
,
C.
,
Chiaraluce
,
L.
,
Cocco
,
M.
,
Barchi
,
M.
, and
Kaus
,
B. J. P.
,
2004
, “
Aftershocks Driven by a High-Pressure CO2 Source at Depth
,”
Nature
,
427
(
6976
), pp.
724
727
.
23.
Battié
,
M. C.
,
Videman
,
T.
, and
Parent
,
E.
,
2004
, “
Lumbar Disc Degeneration Epidemiology and Genetic Influences
,”
Spine
,
29
(
23
), pp.
2679
2690
.
24.
Battié
,
M. C.
,
Videman
,
T.
,
Levalahti
,
E.
,
Gill
,
K.
, and
Kaprio
,
J.
,
2007
, “
Heritability of Low Back Pain and the Role of Disc Degeneration
,”
Pain
,
131
(
3
), pp.
272
280
.
25.
Battié
,
M. C.
,
Videman
,
T.
,
Levälahti
,
E.
,
Gill
,
K.
, and
Kaprio
,
J.
,
2008
, “
Genetic and Environmental Effects on Disc Degeneration by Phenotype and Spinal Level: A Multivariate Twin Study
,”
Spine
,
33
(
25
), pp.
2801
2808
.
26.
Huyghe
,
J. M.
,
Molenaar
,
M. M.
, and
Baajens
,
F. P. T.
,
2007
, “
Poromechanics of Compressible Charged Porous Media Using the Theory of Mixtures
,”
J. Biomech. Eng
,
129
(
5
), pp.
776
785
.
27.
Eringen
,
A. C.
,
1994
, “
A Continuum Theory of Swelling Porous Elastic Soils
,”
Int. J. Eng. Sci
,
32
(
8
), pp.
1337
1349
.
28.
Mijnlieff
,
P. F.
, and
Jaspers
,
W. J. M.
,
1969
, “
Thermodynamics of Swelling of Polymer-Network Gels. Analysis of Excluded Volume Effects in Polymer Solutions and Polymer Networks
,”
J. Polym. Sci. Part B: Polym. Phys.
,
7
(
2
), pp.
357
375
.
29.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
,
2005
, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
158
165
.
30.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A.
,
221
(
582–593
), pp.
163
198
.
31.
Ingraffea
,
A. R.
, and
Saouma
,
V.
,
1985
,
Fracture Mechanics of Concrete
,
Martinus Nijhoff Publishers
, Leiden, The Netherlands.
32.
Knops
,
H. A. J.
,
1994
, “
Numerical Simulation of Crack Growth in Pressurized Fuselages
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
33.
Dugdale
,
D.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
34.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Advan. Appl. Mech.
,
7
, pp.
55
129
.
35.
Needleman
,
A.
,
1987
, “
A Finite Element Method for Localized Failure Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
61
(
2
), pp.
189
214
.
36.
Schrefler
,
B. A.
,
Secchi
,
S.
, and
Simoni
,
L.
,
2006
, “
On Adaptive Refinement Techniques in Multi-Field Problems Including Cohesive Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
4–6
), pp.
444
461
.
37.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
38.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
39.
Wells
,
G.
, and
Sluys
,
L.
,
2001
, “
A New Method for Modelling Cohesive Cracks Using Finite Elements
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2667
2682
.
40.
Larsson
,
J.
, and
Larsson
,
R.
,
2000
, “
Localization Analysis of a Fluid-Saturated Elastoplastic Porous Medium Using Regularized Discontinuities
,”
Mech. Cohes.-Frict. Mater.
,
5
(
7
), pp.
565
582
.
41.
Leonhart
,
D.
, and
Meschke
,
G.
,
2011
, “
Extended Finite Element Method for Hygro-Mechanical Analysis of Crack Propagation in Porous Materials
,”
Proc. Appl. Math. Mech
,
11
(
1
), pp.
161
162
.
42.
Irzal
,
F.
,
Remmers
,
J. J.
,
Huyghe
,
J. M.
, and
De Borst
,
R.
,
2013
, “
A Large Deformation Formulation for Fluid Flow in a Progressively Fracturing Porous Material
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
29
37
.
43.
Remij
,
E. W.
,
Remmers
,
J. J. C.
,
Huyghe
,
J. M.
, and
Smeulders
,
D. M. J.
,
2015
, “
The Enhanced Local Pressure Model for the Accurate Analysis of Fluid Pressure Driven Fracture in Porous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
293
312
.
44.
Terzaghi
,
K.
,
1943
,
Theoretical Soil Mechanics
,
Wiley
,
Hoboken, NJ
.
45.
Kraaijeveld
,
F.
,
Huyghe
,
J. M.
,
Remmers
,
J. J. C.
, and
de Borst
,
R.
,
2013
, “
Two-Dimensional Mode I Crack Propagation in Saturated Ionized Porous Media Using Partition of Unity Finite Elements
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
020907
.
46.
Boone
,
T. J.
, and
Ingraffea
,
A. R.
,
1990
, “
A Numerical Procedure for Simulation of Hydraulically-Driven Fracture Propagation in Poroelastic Media
,”
Int. J. Numer. Anal. Methods
,
14
(
1
), pp.
27
47
.
47.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.
48.
Vermeer
,
P.
, and
Verruijt
,
A.
,
1981
, “
An Accuracy Condition for Consolidation by Finite Elements
,”
Int. J. Numer. Anal. Methods
,
5
(1), pp.
1
14
.
49.
Booker
,
J. R.
, and
Small
,
J. C.
,
1975
, “
An Investigation of the Stability of Numerical Solutions of Biot's Equations of Consolidation
,”
Int. J. Solids Struct.
,
11
(
7–8
), pp.
907
917
.
50.
Faulkner
,
D. R.
,
Mitchell
,
T. M.
,
Healy
,
D.
, and
Heap
,
M. J.
,
2006
, “
Slip on ‘Weak’ Faults by the Rotation of Regional Stress in the Fracture Damage Zone
,”
Nature
,
444
(
7121
), pp.
922
925
.
51.
Thomas
,
A. M.
,
Nadeau
,
R. M.
, and
Bürgmann
,
R.
,
2009
, “
Tremor-Tide Correlations and Near-Lithostatic Pore Pressure on the Deep San Andreas Fault
,”
Nature
,
462
(
7276
), pp.
1048
1051
.
52.
Nolet
,
G.
,
2009
, “
Geophysics. Slabs Do Not Go Gently
,”
Science
,
324
(
5931
), pp.
1152
1153
.
You do not currently have access to this content.