Abstract

Elastic wave metamaterials have been widely exploited with their dynamic superior properties and outstanding acoustic responses. However, it is difficult to directly manipulate sound pressure in low frequencies. In this study, we propose a new kind of elastic wave metamaterial which consists of vertical and lateral resonators as well as orthogonal stiffeners. The active feedback control system is applied to extend to the tunable scope for both lower and higher frequency regions and change the characteristics of acoustic-structure coupling. Its effective mass density is also discussed with different feedback constants. In order to present effects of the fluid–solid interaction, we considered that the elastic wave metamaterial is immersed in different fluid medium and its sound transmission loss (STL) is calculated. This work provides a feasible method for creating mechanical/acoustic models with multi-functional potentials.

References

1.
Rohan
,
E.
,
Miara
,
B.
, and
Seifrt
,
F.
,
2009
, “
Numerical Simulation of Acoustic Band Gaps in Homogenized Elastic Composites
,”
Int. J. Eng. Sci. Int. J. Eng. Sci.
,
47
(
4
), pp.
573
594
. 10.1016/j.ijengsci.2008.12.003
2.
Zhang
,
W. Q.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Yao
,
Y. W.
,
Lu
,
S. F.
,
Dong
,
H. F.
,
Mu
,
Z. F.
, and
Li
,
J. B.
,
2018
, “
Angular Control of Acoustic Waves Oblique Incidence by Phononic Crystals Based on Dirac Cones at the Brillouin Zone Boundary
,”
Phys. Lett. A
,
382
(
6
), pp.
423
427
. 10.1016/j.physleta.2017.12.014
3.
Jia
,
Z.
,
Chen
,
Y. Y.
,
Yang
,
H. X.
, and
Wang
,
L. F.
,
2018
, “
Designing Phononic Crystals With Wide and Robust Band Gaps
,”
Phys. Rev. Appl.
,
9
(
4
), p.
044021
. 10.1103/PhysRevApplied.9.044021
4.
Wu
,
B.
,
Zhou
,
W. J.
,
Bao
,
R. H.
, and
Chen
,
W. Q.
,
2018
, “
Tuning Elastic Waves in Soft Phononic Crystal Cylinders via Large Deformation and Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031004
. 10.1115/1.4038770
5.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2020
, “
Enhancement of Deep-Subwavelength Band Gaps in Flat Spiral-Based Phononic Metamaterials Using the Trampoline Phenomena
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071009
. 10.1115/1.4046893
6.
Ning
,
S. W.
,
Luo
,
C. C.
,
Yang
,
F. Y.
,
Liu
,
Z. L.
, and
Zhuang
,
Z.
,
2020
, “
Mechanically Tunable Solid/Solid Phononic Crystals Through the Rearrangement of Hard Scatterers Controlled by the Deformation of Periodic Elastomeric Matrixes
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101002
. 10.1115/1.4047365
7.
Kuzyk
,
M. C.
, and
Wang
,
H. L.
,
2018
, “
Scaling Phononic Quantum Networks of Solid-State Spins With Closed Mechanical Subsystems
,”
Phys. Rev. X
,
8
(
4
), p.
041027
. 10.1103/PhysRevX.8.041027
8.
Wu
,
T. T.
,
Wu
,
L. C.
, and
Huang
,
Z. G.
,
2005
, “
Frequency Band-Gap Measurement of Two-Dimensional Air/Silicon Phononic Crystals Using Layered Slanted Finger Interdigital Transducers
,”
J. Appl. Phys.
,
97
(
9
), p.
094916
. 10.1063/1.1893209
9.
Cai
,
C. X.
,
Han
,
C.
,
Wu
,
J. F.
,
Wang
,
Z. H.
, and
Zhang
,
Q. H.
,
2019
, “
Tuning Method of Phononic Band Gaps of Locally Resonant Pentamode Metamaterials
,”
J. Phys. D: Appl. Phys.
,
52
(
4
), p.
045601
. 10.1088/1361-6463/aaebdc
10.
Li
,
W. B.
,
Meng
,
F.
,
Li
,
Y. F.
, and
Huang
,
X. D.
,
2019
, “
Topological Design of 3D Phononic Crystals for Ultra-Wide Omnidirectional Bandgaps
,”
Struct. Multidiscip. Optim.
,
60
(
6
), pp.
2405
2415
. 10.1007/s00158-019-02329-0
11.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
. 10.1016/0038-1098(93)90888-T
12.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
. 10.1103/PhysRevLett.71.2022
13.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
14.
Cheng
,
Y.
,
Xu
,
J. Y.
, and
Liu
,
X. J.
,
2008
, “
One-Dimensional Structured Ultrasonic Metamaterials With Simultaneously Negative Dynamic Density and Modulus
,”
Phys. Rev. B
,
77
(
4
), p.
045134
. 10.1103/PhysRevB.77.045134
15.
Zhang
,
S.
,
Yin
,
L. L.
, and
Fang
,
N.
,
2009
, “
Focusing Ultrasound With an Acoustic Metamaterial Network
,”
Phys. Rev. Lett.
,
102
(
19
), p.
194301
. 10.1103/PhysRevLett.102.194301
16.
Mei
,
C. C.
, and
Liu
,
Y. H.
,
2011
, “
Approximate Theory of Acoustic Waveguide of Metamaterials
,”
J. Fluid Mech.
,
678
, pp.
203
220
. 10.1017/jfm.2011.106
17.
Man
,
X. F.
,
Liu
,
T. T.
,
Xia
,
B. Z.
,
Luo
,
Z.
,
Xie
,
L. X.
, and
Liu
,
J.
,
2018
, “
Space-Coiling Fractal Metamaterial With Multi-Bandgaps on Subwavelength Scale
,”
J. Sound Vib.
,
423
, pp.
322
339
. 10.1016/j.jsv.2018.02.060
18.
Hu
,
G. B.
,
Austin
,
A. C. M.
,
Sorokin
,
V.
, and
Tang
,
L. H.
,
2021
, “
Metamaterial Beam With Graded Local Resonators for Broadband Vibration Suppression
,”
Mech. Syst. Signal Process
,
146
, p.
106982
. 10.1016/j.ymssp.2020.106982
19.
Hess
,
O.
,
Pendry
,
J. B.
,
Maier
,
S. A.
,
Oulton
,
R. F.
,
Hamm
,
J. M.
, and
Tsakmakidis
,
K. L.
,
2012
, “
Active Nanoplasmonic Metamaterials
,”
Nat. Mater.
,
11
(
7
), pp.
573
584
. 10.1038/nmat3356
20.
Baz
,
A.
,
2018
, “
Active Nonreciprocal Acoustic Metamaterials Using a Switching Controller
,”
J. Acoust. Soc. Am.
,
143
(
3
), pp.
1376
1384
. 10.1121/1.5026510
21.
Reynolds
,
M.
, and
Daley
,
S.
,
2014
, “
An Active Viscoelastic Metamaterial for Isolation Applications
,”
Smart Mater. Struct.
,
23
(
4
), p.
045030
. 10.1088/0964-1726/23/4/045030
22.
Smith
,
D. R.
, and
Kroll
,
N.
,
2000
, “
Negative Refractive Index in Left-Handed Materials
,”
Phys. Rev. Lett.
,
85
(
14
), pp.
2933
2936
. 10.1103/PhysRevLett.85.2933
23.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
. 10.1063/1.4752468
24.
Lossouarn
,
B.
,
Deü
,
J. F.
, and
Aucejo
,
M.
,
2015
, “
Multimodal Vibration Damping of a Beam With a Periodic Array of Piezoelectric Patches Connected to a Passive Electrical Network
,”
Smart Mater. Struct.
,
24
(
11
), p.
115037
. 10.1088/0964-1726/24/11/115037
25.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), p.
16001
. 10.1038/natrevmats.2016.1
26.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
. 10.1016/j.ijengsci.2008.12.007
27.
Ding
,
C. L.
,
Hao
,
L. M.
, and
Zhao
,
X. P.
,
2010
, “
Two-Dimensional Acoustic Metamaterial With Negative Modulus
,”
J. Appl. Phys.
,
108
(
7
), p.
074911
. 10.1063/1.3493155
28.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
. 10.1115/1.4000784
29.
An
,
X. Y.
,
Sun
,
F. F.
,
Yu
,
P. S.
,
Fan
,
H. L.
,
He
,
S. P.
, and
Fang
,
D. N.
,
2015
, “
Negative Effective Mass Density of One-Dimensional Hierarchical Metacomposite
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031002
. 10.1115/1.4029488
30.
Wang
,
T.
,
Sheng
,
M. P.
, and
Qin
,
Q. H.
,
2017
, “
Sound Transmission Loss Through Metamaterial Plate With Lateral Local Resonators in the Presence of External Mean Flow
,”
J. Acoust. Soc. Am.
,
141
(
2
), pp.
1161
1169
. 10.1121/1.4976194
31.
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G. K.
,
2018
, “
Tunable Fluid-Solid Metamaterials for Manipulation of Elastic Wave Propagation in Broad Frequency Range
,”
Appl. Phys. Lett.
,
112
(
22
), p.
221906
. 10.1063/1.5023307
32.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2010
, “
Analytical Modeling of Fluid Loaded Orthogonally Rib-Stiffened Sandwich Structures: Sound Transmission
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1374
1396
. 10.1016/j.jmps.2010.05.008
33.
Meng
,
H.
,
Xin
,
F. X.
, and
Lu
,
T. J.
,
2012
, “
External Mean Flow Effects on Sound Transmission Through Acoustic Absorptive Sandwich Structure
,”
AIAA J.
,
50
(
10
), pp.
2268
2276
. 10.2514/1.J051733
34.
Zhou
,
J.
,
Bhaskar
,
A.
, and
Zhang
,
X.
,
2015
, “
Sound Transmission Through Double Cylindrical Shells Lined With Porous Material Under Turbulent Boundary Layer Excitation
,”
J. Sound Vib.
,
357
, pp.
253
268
. 10.1016/j.jsv.2015.07.014
35.
Liu
,
G. R.
,
Cai
,
C.
, and
Lam
,
K. Y.
,
2000
, “
Sound Reflection and Transmission of Compliant Plate-Like Structures by a Plane Sound Wave Excitation
,”
J. Sound Vib.
,
230
(
4
), pp.
809
824
. 10.1006/jsvi.1999.2652
36.
Xiao
,
Y.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2012
, “
Sound Transmission Loss of Metamaterial-Based Thin Plates With Multiple Subwavelength Arrays of Attached Resonators
,”
J. Sound Vib.
,
331
(
25
), pp.
5408
5423
. 10.1016/j.jsv.2012.07.016
37.
Cheer
,
J.
,
Daley
,
S.
, and
McCormick
,
C.
,
2017
, “
Feedforward Control of Sound Transmission Using an Active Acoustic Metamaterial
,”
Smart Mater. Struct.
,
26
(
2
), p.
025032
. 10.1088/1361-665X/aa52fb
38.
He
,
Z. H.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2019
, “
Active Feedback Control on Sound Radiation of Elastic Wave Metamaterials
,”
AIAA J.
,
57
(
10
), pp.
4536
4547
. 10.2514/1.J058068
39.
He
,
Z. H.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2021
, “
Active Feedback Control of Effective Mass Density and Sound Transmission on Elastic Wave Metamaterials
,”
Int. J. Mech. Sci.
,
195
, p.
106221
. 10.1016/j.ijmecsci.2020.106221
40.
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Wang
,
Y. S.
,
2017
, “
Active Feedback Control of Elastic Wave Metamaterials
,”
J. Intell. Mater. Syst. Struct.
,
28
(
15
), pp.
2110
2116
. 10.1177/1045389X16682851
41.
Fuller
,
C. R.
,
Elliott
,
S. J.
, and
Nelson
,
P. A.
,
1996
,
Active Control Vibration
,
Academic Press
,
Salt Lake City
.
42.
Inman
,
D. J.
,
2006
,
Vibration with Control
,
John Wiley and Sons Ltd.
,
West Sussex, England
.
43.
Takahashi
,
D.
,
1983
, “
Sound Radiation From Periodically Connected Double-Plate Structures
,”
J. Sound Vib.
,
90
(
4
), pp.
541
557
. 10.1016/0022-460X(83)90810-6
44.
Wang
,
J.
,
Lu
,
T. J.
,
Woodhouse
,
J.
,
Langley
,
R. S.
, and
Evans
,
J.
,
2005
, “
Sound Transmission Through Lightweight Double-Leaf Partitions: Theoretical Modelling
,”
J. Sound Vib.
,
286
(
4–5
), pp.
817
847
. 10.1016/j.jsv.2004.10.020
45.
Mace
,
B. R.
,
1980
, “
Sound Radiation From a Plate Reinforced by Two Sets of Parallel Stiffeners
,”
J. Sound Vib.
,
71
(
3
), pp.
435
441
. 10.1016/0022-460X(80)90425-3
46.
Yin
,
X. W.
, and
Cui
,
H. F.
,
2009
, “
Acoustic Radiation From a Laminated Composite Plate Excited by Longitudinal and Transverse Mechanical Drives
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
044501
. 10.1115/1.3086429
You do not currently have access to this content.