Abstract

Laminated glass is a composite made of glass plies sandwiching polymeric interlayers, permanently bonded with a process at high pressure and temperature in autoclave. Within the quasi-elastic approximation, according to which the polymer is linear elastic material whose elastic modulus parametrically depends upon time and environmental temperature, we present a model for inflexed laminated-glass beams in the pre-glass-breakage phase. The approach relies on a modified version of the refined zig-zag theory for composites, in which the glass plies are treated as Euler–Bernoulli beams, whereas the interlayers can only provide a shear-stiffness contribution to the coupling of the glass plies. The kinematic description is greatly simplified and the governing equations can be solved analytically, for laminated packages of any type, when the beam is statically determined. A finite element implementation is proposed for the most general cases. The convergence analysis for the numerical approach and the comparison with the analytical solution in benchmark problems demonstrate the efficiency of the proposed method.

References

1.
Hooper
,
J.
,
1973
, “
On the Bending of Architectural Laminated Glass
,”
Int. J. Mech. Sci.
,
15
(
4
), pp.
309
323
.
2.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2018
, “
The Post-Breakage Response of Laminated Heat-Treated Glass Under in Plane and Out of Plane Loading
,”
Compos. Part B: Eng.
,
147
, pp.
227
239
.
3.
Norville
,
H. S.
,
King
,
K. W.
, and
Swofford
,
J. L.
,
1998
, “
Behavior and Strength of Laminated Glass
,”
J. Eng. Mech.
,
124
(
1
), pp.
46
53
.
4.
Behr
,
R. A.
,
Minor
,
J. E.
, and
Norville
,
H. S.
,
1993
, “
Structural Behavior of Architectural Laminated Glass
,”
J. Struct. Eng.
,
119
(
1
), pp.
202
222
.
5.
Shitanoki
,
Y.
,
Bennison
,
S. J.
, and
Koike
,
Y.
,
2014
, “
Analytic Models of a Thin Glass-Polymer Laminate and Development of a Rational Engineering Design Methodology
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121009
.
6.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2013
, “
The Effective Thickness of Laminated Glass: Inconsistency of the Formulation in a Proposal of En-Standards
,”
Compos. Part B: Eng.
,
55
, pp.
109
118
.
7.
Biolzi
,
L.
,
Cattaneo
,
S.
,
Orlando
,
M.
,
Ruggero Piscitelli
,
L.
, and
Spinelli
,
P.
,
2020
, “
Constitutive Relationships of Different Interlayer Materials for Laminated Glass
,”
Compos. Struct.
,
244
, p.
112221
.
8.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2012
, “
Laminated Beams With Viscoelastic Interlayer
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2637
2645
.
9.
Di Paola
,
M.
,
Galuppi
,
L.
, and
Royer Carfagni
,
G.
,
2021
, “
Fractional Viscoelastic Characterization of Laminated Glass Beams Under Time-Varying Loading
,”
Int. J. Mech. Sci.
,
196
, p.
106274
.
10.
Viviani
,
L.
,
Di Paola
,
M.
, and
Royer-Carfagni
,
G.
,
2022
, “
Fractional Viscoelastic Modeling of Laminated Glass Beams in the Pre-Crack State Under Explosive Loads
,”
Int. J. Solids Struct.
,
248
, pp.
111617/1
17
.
11.
Viviani
,
L.
,
Di Paola
,
M.
, and
Royer-Carfagni
,
G.
,
2022
, “
A Fractional Viscoelastic Model for Laminated Glass Sandwich Plates Under Blast Actions
,”
Int. J. Mech. Sci.
,
222
, p.
107204
.
12.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2014
, “
Buckling of Three-Layered Composite Beams With Viscoelastic Interaction
,”
Compos. Struct.
,
107
(
1
), pp.
512
521
.
13.
Wölfel
,
E.
,
1987
, “
Nachgiebiger verbund. eine näherungslösung und deren anwendungsmöglichkeiten
,”
Der Stahlbau
,
56
(
6
), pp.
173
180
.
14.
Van Duser
,
A.
,
Jagota
,
A.
, and
Bennison
,
S.
,
1999
, “
Analysis of Glass/Polyvinyl Butyral Laminates Subjected to Uniform Pressure
,”
J. Eng. Mech.
,
125
(
4
), pp.
435
442
.
15.
ASTM
,
2016
, ASTM E-1300, Standard Practice for Determining Load Resistance of Glass in Buildings.
16.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2012
, “
Effective Thickness of Laminated Glass Beams: New Expression Via a Variational Approach
,”
Eng. Struct.
,
38
, pp.
53
67
.
17.
CEN
,
2021
, FprCEN/TS 19100/2, Design of Glass Structures – Part 2: Design of Out-of-Plane Loaded Glass Components.
18.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2012
, “
The Effective Thickness of Laminated Glass Plates
,”
J. Mech. Mater. Struct.
,
7
(
4
), pp.
375
400
.
19.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2014
, “
Enhanced Effective Thickness of Multi-Layered Laminated Glass
,”
Compos. Part B: Eng.
,
64
, pp.
202
213
.
20.
Galuppi
,
L.
,
Manara
,
G.
, and
Royer Carfagni
,
G.
,
2013
, “
Practical Expressions for the Design of Laminated Glass
,”
Compos. Part B: Eng.
,
45
(
1
), pp.
1677
1688
.
21.
Galuppi
,
L.
,
Manara
,
G.
, and
Royer Carfagni
,
G.
,
2014
, “
Erratum: Practical Expressions for the Design of Laminated Glass (Composites Part B: Engineering (2013) 45 (1677–1688))
,”
Compos. Part B: Eng.
,
56
, pp.
599
601
.
22.
Newmark
,
N. M.
,
Siess
,
C. P.
, and
Viest
,
I.
,
1951
, “
Test and Analysis of Composite Beams With Incomplete Interaction
,”
Proc. Soc. Exp. Stress Anal.
,
9
, pp.
75
92
.
23.
Reddy
,
J. N.
,
1987
, “
A Generalization of Two-Dimensional Theories of Laminated Composite Plates
,”
Commun. Appl. Numer. Methods
,
3
(
3
), pp.
173
180
.
24.
Owen
,
D.
, and
Li
,
Z.
,
1987
, “
Elasto-Plastic Numerical Analysis of Anisotropic Laminated Plates by a Refined Finite Element Model
,”
Computational Plasticity: Models Software and Application
,
E. O. E.
Owen
and
R.
Hinton
, eds.,
Pineridge Press
,
Swansea, UK
, pp.
749
775
.
25.
Amabili
,
M.
,
Balasubramanian
,
P.
,
Garziera
,
R.
, and
Royer-Carfagni
,
G.
,
2020
, “
Blast Loads and Nonlinear Vibrations of Laminated Glass Plates in an Enhanced Shear Deformation Theory
,”
Compos. Struct.
,
252
, p.
112720
.
26.
Di Sciuva
,
M.
,
1987
, “
An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
589
596
.
27.
Di Sciuva
,
M.
,
1985
, “
Development of an Anisotropic, Multilayered, Shear-Deformable Rectangular Plate Element
,”
Comput. Struct.
,
21
(
4
), pp.
789
796
.
28.
Averill
,
R. C.
,
1994
, “
Static and Dynamic Response of Moderately Thick Laminated Beams With Damage
,”
Compos. Eng.
,
4
(
4
), pp.
381
395
.
29.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2009
, “
A Refined Zigzag Beam Theory for Composite and Sandwich Beams
,”
J. Compos. Mater.
,
43
(
9
), pp.
1051
1081
.
30.
Cho
,
Y.-B.
, and
Averill
,
R. C.
,
1997
, “
An Improved Theory and Finite-Element Model for Laminated Composite and Sandwich Beams Using First-Order Zig-Zag Sublaminate Approximations
,”
Compos. Struct.
,
37
(
3
), pp.
281
298
.
31.
Brischetto
,
S.
,
Carrera
,
E.
, and
Demasi
,
L.
,
2009
, “
Improved Bending Analysis of Sandwich Plates Using a Zig-Zag Function
,”
Compos. Struct.
,
89
(
3
), pp.
408
415
.
32.
Lewandowski
,
R.
,
Litewka
,
P.
, and
Wielentejczyk
,
P.
,
2021
, “
Free Vibrations of Laminate Plates With Viscoelastic Layers Using the Refined Zig-Zag Theory—Part 1. Theoretical Background
,”
Compos. Struct.
,
278
, p.
114547
.
33.
Baraldi
,
D.
,
2018
, “
A Simple Mixed Finite Element Model for Laminated Glass Beams
,”
Compos. Struct.
,
194
, pp.
611
623
.
34.
Shitanoki
,
Y.
,
Bennison
,
S. J.
, and
Koike
,
Y.
,
2015
, “
Structural Behavior Thin Glass Ionomer Laminates With Optimized Specific Strength and Stiffness
,”
Compos. Struct.
,
125
, pp.
615
620
.
35.
Naumenko
,
K.
, and
Eremeyev
,
V. A.
,
2014
, “
A Layer-Wise Theory for Laminated Glass and Photovoltaic Panels
,”
Compos. Struct.
,
112
, pp.
283
291
.
36.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2020
, “
Conjugate-Beam Analogy for Inflexed Laminates
,”
Int. J. Solids Struct.
,
206
, pp.
396
411
.
37.
Silva
,
G. H.
,
Riche
,
R. L.
,
Molimard
,
J.
, and
Vautrin
,
A.
,
2009
, “
Exact and Efficient Interpolation Using Finite Elements Shape Functions
,”
Eur. J. Comput. Mech.
,
18
(
3–4
), pp.
307
331
.
You do not currently have access to this content.