Abstract

Liquid crystal elastomers (LCEs) are made of liquid crystal molecules integrated with rubber-like polymer networks. An LCE exhibits both the thermotropic property of liquid crystals and the large deformation of elastomers. It can be monodomain or polydomain in the nematic phase and transforms to an isotropic phase at elevated temperature. These features have enabled various new applications of LCEs in robotics and other fields. However, despite substantial research and development in recent years, thermomechanical coupling in polydomain LCEs remains poorly studied, such as their temperature-dependent mechanical response and stretch-influenced isotropic-nematic phase transition. This knowledge gap severely limits the fundamental understanding of the structure-property relationship, as well as future developments of LCEs with precisely controlled material behaviors. Here, we construct a theoretical model to investigate the thermomechanical coupling in polydomain LCEs. The model includes a quasi-convex elastic energy of the polymer network and a free energy of mesogens. We study the working conditions where a polydomain LCE is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the material, and the free energy of mesogens governs their first-order nematic-isotropic phase transition. The evolution of the mechanical phase diagram and the order parameter with temperature is predicted and discussed. Unique temperature-dependent mechanical behaviors of the polydomain LCE that have never been reported before are shown in their stress-stretch curves. These results are hoped to motivate future fundamental studies and new applications of thermomechanical LCEs.

References

1.
Biggins
,
J. S.
,
Warner
,
M.
, and
Bhattacharya
,
K.
,
2009
, “
Supersoft Elasticity in Polydomain Nematic Elastomers
,”
Phys. Rev. Lett.
,
103
(
3
), p.
037802
.
2.
Traugutt
,
N. A.
,
Mistry
,
D.
,
Luo
,
C.
,
Yu
,
K.
,
Ge
,
Q.
, and
Yakacki
,
C. M.
,
2020
, “
Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing
,”
Adv. Mater.
,
32
(
28
), p.
2000797
.
3.
White
,
T. J.
, and
Broer
,
D. J.
,
2015
, “
Programmable and Adaptive Mechanics With Liquid Crystal Polymer Networks and Elastomers
,”
Nat. Mater.
,
14
(
11
), pp.
1087
1098
.
4.
Guin
,
T.
,
Settle
,
M. J.
,
Kowalski
,
B. A.
,
Auguste
,
A. D.
,
Beblo
,
R. V.
,
Reich
,
G. W.
, and
White
,
T. J.
,
2018
, “
Layered Liquid Crystal Elastomer Actuators
,”
Nat. Commun.
,
9
(
1
), p.
2531
.
5.
Kuenstler
,
A. S.
,
Chen
,
Y.
,
Bui
,
P.
,
Kim
,
H.
,
DeSimone
,
A.
,
Jin
,
L.
, and
Hayward
,
R. C.
,
2020
, “
Blueprinting Photothermal Shape-Morphing of Liquid Crystal Elastomers
,”
Adv. Mater.
,
32
(
17
), p.
2000609
.
6.
Zhang
,
W.
,
Nan
,
Y.
,
Wu
,
Z.
,
Shen
,
Y.
, and
Luo
,
D.
,
2022
, “
Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications
,”
Molecules
,
27
(
14
), p.
4330
.
7.
Bai
,
R.
, and
Bhattacharya
,
K.
,
2020
, “
Photomechanical Coupling in Photoactive Nematic Elastomers
,”
J. Mech. Phys. Solids
,
144
, p.
104115
.
8.
Wei
,
Z.
, and
Bai
,
R.
,
2022
, “
Temperature-Modulated Photomechanical Actuation of Photoactive Liquid Crystal Elastomers
,”
Extreme Mech. Lett.
,
51
, p.
101614
.
9.
Finkelmann
,
H.
,
Nishikawa
,
E.
,
Pereira
,
G. G.
, and
Warner
,
M.
,
2001
, “
A New Opto-Mechanical Effect in Solids
,”
Phys. Rev. Lett.
,
87
(
1
), p.
015501
.
10.
Merkel
,
D. R.
,
Traugutt
,
N. A.
,
Visvanathan
,
R.
,
Yakacki
,
C. M.
, and
Frick
,
C. P.
,
2018
, “
Thermomechanical Properties of Monodomain Nematic Main-Chain Liquid Crystal Elastomers
,”
Soft Matter
,
14
(
29
), pp.
6024
6036
.
11.
Kularatne
,
R. S.
,
Kim
,
H.
,
Boothby
,
J. M.
, and
Ware
,
T. H.
,
2017
, “
Liquid Crystal Elastomer Actuators: Synthesis, Alignment, and Applications
,”
J. Polym. Sci., Part B: Polym. Phys.
,
55
(
5
), pp.
395
411
.
12.
Yamada
,
M.
,
Kondo
,
M.
,
Mamiya
,
J.-I.
,
Yu
,
Y.
,
Kinoshita
,
M.
,
Barrett
,
C. J.
, and
Ikeda
,
T.
,
2008
, “
Photomobile Polymer Materials: Towards Light-Driven Plastic Motors
,”
Angew. Chem.
,
120
(
27
), pp.
5064
5066
.
13.
Li
,
Y.
,
Teixeira
,
Y.
,
Parlato
,
G.
,
Grace
,
J.
,
Wang
,
F.
,
Huey
,
B. D.
, and
Wang
,
X.
,
2022
, “
Three-Dimensional Thermochromic Liquid Crystal Elastomer Structures With Reversible Shape-Morphing and Color-Changing Capabilities for Soft Robotics
,”
Soft Matter
,
18
(
36
), pp.
6857
6867
.
14.
Pang
,
W.
,
Xu
,
S.
,
Liu
,
L.
,
Bo
,
R.
, and
Zhang
,
Y.
,
2023
, “
Thin-Film-Shaped Flexible Actuators
,”
Adv. Intell. Syst.
,
5
(
8
), p.
2300060
.
15.
Azoug
,
A.
,
Vasconcellos
,
V.
,
Dooling
,
J.
,
Saed
,
M.
,
Yakacki
,
C. M.
, and
Nguyen
,
T. D.
,
2016
, “
Viscoelasticity of the Polydomain-Monodomain Transition in Main-Chain Liquid Crystal Elastomers
,”
Polymer
,
98
, pp.
165
171
.
16.
Ambulo
,
C. P.
,
Tasmim
,
S.
,
Wang
,
S.
,
Abdelrahman
,
M. K.
,
Zimmern
,
P. E.
, and
Ware
,
T. H.
,
2020
, “
Processing Advances in Liquid Crystal Elastomers Provide a Path to Biomedical Applications
,”
J. Appl. Phys.
,
128
(
14
), p.
140901
.
17.
He
,
Q.
,
Zheng
,
Y.
,
Wang
,
Z.
,
He
,
X.
, and
Cai
,
S.
,
2020
, “
Anomalous Inflation of a Nematic Balloon
,”
J. Mech. Phys. Solids
,
142
, p.
104013
.
18.
Tokumoto
,
H.
,
Zhou
,
H.
,
Takebe
,
A.
,
Kamitani
,
K.
,
Kojio
,
K.
,
Takahara
,
A.
,
Bhattacharya
,
K.
, and
Urayama
,
K.
,
2021
, “
Probing the In-Plane Liquid-Like Behavior of Liquid Crystal Elastomers
,”
Sci. Adv.
,
7
(
25
), p.
eabe9495
.
19.
Modes
,
C.
,
Warner
,
M.
,
Van Oosten
,
C.
, and
Corbett
,
D.
,
2010
, “
Anisotropic Response of Glassy Splay-Bend and Twist Nematic Cantilevers to Light and Heat
,”
Phys. Rev. E
,
82
(
4
), p.
041111
.
20.
Korner
,
K.
,
Kuenstler
,
A. S.
,
Hayward
,
R. C.
,
Audoly
,
B.
, and
Bhattacharya
,
K.
,
2020
, “
A Nonlinear Beam Model of Photomotile Structures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
18
), pp.
9762
9770
.
21.
Jin
,
L.
,
Zeng
,
Z.
, and
Huo
,
Y.
,
2010
, “
Thermomechanical Modeling of the Thermo-Order–Mechanical Coupling Behaviors in Liquid Crystal Elastomers
,”
J. Mech. Phys. Solids
,
58
(
11
), pp.
1907
1927
.
22.
Traugutt
,
N. A.
,
Volpe
,
R. H.
,
Bollinger
,
M. S.
,
Saed
,
M. O.
,
Torbati
,
A. H.
,
Yu
,
K.
,
Dadivanyan
,
N.
, and
Yakacki
,
C. M.
,
2017
, “
Liquid-Crystal Order During Synthesis Affects Main-Chain Liquid-Crystal Elastomer Behavior
,”
Soft Matter
,
13
(
39
), pp.
7013
7025
.
23.
Warner
,
M.
, and
Terentjev
,
E. M.
,
2007
,
Liquid Crystal Elastomers
,
Oxford University Press
,
Oxford, UK
.
24.
Biggins
,
J. S.
,
Warner
,
M.
, and
Bhattacharya
,
K.
,
2012
, “
Elasticity of Polydomain Liquid Crystal Elastomers
,”
J. Mech. Phys. Solids
,
60
(
4
), pp.
573
590
.
25.
DeSimone
,
A.
, and
Teresi
,
L.
,
2009
, “
Elastic Energies for Nematic Elastomers
,”
Phys. Rev. E
,
29
(
2
), pp.
191
204
.
26.
DeSimone
,
A.
, and
Dolzmann
,
G.
,
2002
, “
Macroscopic Response of Nematic Elastomers Via Relaxation of a Class of SO(3)-Invariant Energies
,”
Arch. Ration. Mech. Anal.
,
161
(
3
), pp.
181
204
.
27.
Yakacki
,
C.
,
Saed
,
M.
,
Nair
,
D.
,
Gong
,
T.
,
Reed
,
S.
, and
Bowman
,
C.
,
2015
, “
Tailorable and Programmable Liquid-Crystalline Elastomers Using a Two-Stage Thiol–Acrylate Reaction
,”
RSC Adv.
,
5
(
25
), pp.
18997
19001
.
28.
Conti
,
S.
,
DeSimone
,
A.
, and
Dolzmann
,
G.
,
2002
, “
Semisoft Elasticity and Director Reorientation in Stretched Sheets of Nematic Elastomers
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
,
66
(
6 Pt 1
), p.
061710
.
29.
Urayama
,
K.
,
Kohmon
,
E.
,
Kojima
,
M.
, and
Takigawa
,
T.
,
2009
, “
Polydomain-Monodomain Transition of Randomly Disordered Nematic Elastomers With Different Cross-Linking Histories
,”
Macromolecules
,
42
(
12
), pp.
4084
4089
.
30.
Bladon
,
P.
,
Terentjev
,
E.
, and
Warner
,
M.
,
1993
, “
Transitions and Instabilities in Liquid Crystal Elastomers
,”
Phys. Rev. E
,
47
(
6
), pp.
R3838
R3840
.
31.
Maier
,
W.
, and
Saupe
,
A.
,
1959
, “
Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1
,”
Z. Naturforsch.
,
14
(
10
), pp.
882
889
.
32.
Corbett
,
D.
, and
Warner
,
M.
,
2006
, “
Nonlinear Photoresponse of Disordered Elastomers
,”
Phys. Rev. Lett.
,
96
(
23
), p.
237802
.
33.
Corbett
,
D.
, and
Warner
,
M.
,
2008
, “
Polarization Dependence of Optically Driven Polydomain Elastomer Mechanics
,”
Phy. Rev. E
,
78
(
6 Pt 1
), p.
061701
.
34.
Schätzle
,
J.
,
Kaufhold
,
W.
, and
Finkelmann
,
H.
,
1989
, “
Nematic Elastomers: The Influence of External Mechanical Stress on the Liquid-Crystalline Phase Behavior
,”
Die Makromolekulare Chemie
,
190
(
12
), pp.
3269
3284
.
You do not currently have access to this content.