Abstract

A novel approach for microstructure reconstruction using artificial intelligence (MR-AI) was proposed to nondestructively measure the through-thickness average stochastic fiber orientation distribution (FOD) in a prepreg platelet molded composite (PPMC) plate. MR-AI approach uses thermal strain components on the surfaces of a PPMC plate as input to the deep learning model, which allows to predict a distribution of local through-thickness average fiber orientation state in the entire PPMC volume. The experimental setup with a heating stage and digital image correlation (DIC) was used to measure thermal strains on the surface of the PPMC plate. Optical microscopy was then used to measure FOD in the cross section of the PPMC plate. FOD measurements from optical microscopy imagery compared favorably with FOD prediction by MR-AI. The proposed methodology opens the opportunity for rapid, nondestructive inspection of manufacturing-induced FOD in molded composites.

References

1.
Bader
,
M. G.
,
2002
, “
Selection of Composite Materials and Manufacturing Routes for Cost-Effective Performance
,”
Composites Part A
,
33
(
7
), pp.
913
934
.
2.
Sattar
,
S.
,
Laredo
,
B. B.
,
Kravchenko
,
S. G.
, and
Kravchenko
,
O. G.
,
2023
, “
Effect of Platelet Length and Stochastic Morphology on Flexural Behavior of Prepreg Platelet Molded Composites
,”
Polym. Compos.
,
44
(
4
), pp.
2122
2137
.
3.
Sattar
,
S.
,
Laredo
,
B. B.
,
Pedrazzoli
,
D.
,
Zhang
,
M.
, and
Kravchenko
,
O. G.
,
2020
, “
Understanding Size Effects on Flexural Properties in Discontinuous Fiber Reinforced Nylon Composites
,”
The Composites and Advanced Materials Expo (CAMX)
,
virtual
,
Sept. 21–24
.
4.
LeBlanc
,
D.
,
Landry
,
B.
,
Levy
,
A.
,
Hubert
,
P.
,
Roy
,
S.
, and
Yousefpour
,
A.
,
2014
, “
Compression Moulding of Complex Parts Using Randomly-Oriented Strands Thermoplastic Composites
,”
Society for the Advancement of Material and Process Engineering (SAMPE)
,
Seattle, WA
,
June 2–5
.
5.
Taketa
,
I.
,
Okabe
,
T.
,
Matsutani
,
H.
, and
Kitano
,
A.
,
2011
, “
Flowability of Unidirectionally Arrayed Chopped Strands in Compression Molding
,”
Composites, Part B
,
42
(
6
), pp.
1764
1769
.
6.
Alam
,
S.
, and
Saquib
,
M. N.
,
2019
, “
Impact Analysis of a Composite Armor System
,”
Volume 9: Mechanics of Solids, Structures, and Fluids, International Mechanical Engineering Congress & Exposition (IMECE)
,
Salt Lake City, UT
,
Nov. 11–14
.
7.
Kravchenko
,
S. G.
,
Sommer
,
D. E.
,
Denos
,
B. R.
,
Favaloro
,
A. J.
,
Tow
,
C. M.
,
Avery
,
W. B.
, and
Pipes
,
R. B.
,
2019
, “
Tensile Properties of a Stochastic Prepreg Platelet Molded Composite
,”
Composites Part A
,
124
, p.
105507
.
8.
Sommer
,
D. E.
,
Kravchenko
,
S. G.
,
Denos
,
B. R.
,
Favaloro
,
A. J.
, and
Pipes
,
R. B.
,
2020
, “
Integrative Analysis for Prediction of Process-Induced, Orientation-Dependent Tensile Properties in a Stochastic Prepreg Platelet Molded Composite
,”
Composites, Part A
,
130
, p.
105759
.
9.
Feraboli
,
P.
,
Peitso
,
E.
,
Deleo
,
F.
,
Cleveland
,
T.
, and
Stickler
,
P. B.
,
2009
, “
Characterization of Prepreg-Based Discontinuous Carbon Fiber/Epoxy Systems
,”
J. Reinf. Plast. Compos.
,
28
(
10
), pp.
1191
1214
.
10.
Yamashita
,
S.
,
Hashimoto
,
K.
,
Suganuma
,
H.
, and
Takahashi
,
J.
,
2016
, “
Experimental Characterization of the Tensile Failure Mode of Ultra-Thin Chopped Carbon Fiber Tape-Reinforced Thermoplastics
,”
J. Reinf. Plast. Compos.
,
35
(
18
), pp.
1342
1352
.
11.
Visweswaraiah
,
S. B.
,
Selezneva
,
M.
,
Lessard
,
L.
, and
Hubert
,
P.
,
2018
, “
Mechanical Characterisation and Modelling of Randomly Oriented Strand Architecture and Their Hybrids—A General Review
,”
J. Reinf. Plast. Compos.
,
37
(
8
), pp.
548
580
.
12.
Kravchenko
,
S. G.
,
Sommer
,
D. E.
,
Denos
,
B. R.
,
Avery
,
W. B.
, and
Pipes
,
R. B.
,
2019
, “
Structure-Property Relationship for a Prepreg Platelet Molded Composite With Engineered Meso-Morphology
,”
Compos. Struct.
,
210
, pp.
430
445
.
13.
Ko
,
S.
,
Yang
,
J.
,
Tuttle
,
M. E.
, and
Salviato
,
M.
,
2019
, “
Effect of the Platelet Size on the Fracturing Behavior and Size Effect of Discontinuous Fiber Composite Structures
,”
Compos. Struct.
,
227
, p.
111245
.
14.
Ferrarese
,
A.
,
Boursier Niutta
,
C.
,
Ciampaglia
,
A.
,
Ciardiello
,
R.
,
Paolino
,
D. S.
, and
Belingardi
,
G.
,
2023
, “
Experimental and Numerical Investigation of the Mesoscale Size Effect in Notched Woven Composites
,”
Appl. Sci.ences
,
13
(
7
), p.
4300
.
15.
Cutting
,
R. A.
,
Rios-Tascon
,
F.
, and
Goodsell
,
J. E.
,
2020
, “
Experimental Investigation of the Crush Performance of Prepreg Platelet Molding Compound Tubes
,”
J. Compos. Mater.
,
54
(
27
), pp.
4311
4324
.
16.
Saquib
,
M. N.
,
2019
, “
Ballistic Impact on a Sandwich-Structured Composite Armor
,”
M.S. thesis
,
ProQuest, Order No. 28320230, MEIE, TAMUK
,
Kingsville, TX
.
17.
Teuwsen
,
J.
,
Hohn
,
S. K.
, and
Osswald
,
T. A.
,
2020
, “
Direct Fiber Simulation of a Compression Molded Ribbed Structure Made of a Sheet Molding Compound With Randomly Oriented Carbon/Epoxy Prepreg Strands—A Comparison of Predicted Fiber Orientations With Computed Tomography Analyses
,”
J. Compos. Sci.
,
4
(
4
), p.
164
.
18.
Sommer
,
D. E.
,
Kravchenko
,
S. G.
, and
Pipes
,
R. B.
,
2020
, “
A Numerical Study of the Meso-Structure Variability in the Compaction Process of Prepreg Platelet Molded Composites
,”
Composites, Part A
,
138
, p.
106010
.
19.
Sattar
,
S.
,
Beltran Laredo
,
B.
,
Pedrazzoli
,
D.
,
Zhang
,
M.
,
Kravchenko
,
S. G.
, and
Kravchenko
,
O. G.
,
2022
, “
Mechanical Behavior of Long Discontinuous Glass Fiber Nylon Composite Produced by In-Situ Polymerization
,”
Composites, Part A
,
154
, p.
106779
.
20.
Feraboli
,
P.
,
Cleveland
,
T.
,
Ciccu
,
M.
,
Stickler
,
P.
, and
DeOto
,
L.
,
2010
, “
Defect and Damage Analysis of Advanced Discontinuous Carbon/Epoxy Composite Materials
,”
Composites, Part A
,
41
(
7
), pp.
888
901
.
21.
Kravchenko
,
O. G.
,
Kravchenko
,
S. G.
,
Casares
,
A.
, and
Pipes
,
R. B.
,
2015
, “
Digital Image Correlation Measurement of Resin Chemical and Thermal Shrinkage After Gelation
,”
J. Mater. Sci.
,
50
(
15
), pp.
5244
5252
.
22.
Bing
,
P.
,
Hui-min
,
X.
,
Tao
,
H.
, and
Asundi
,
A.
,
2009
, “
Measurement of Coefficient of Thermal Expansion of Films Using Digital Image Correlation Method
,”
Polym. Test.
,
28
(
1
), pp.
75
83
.
23.
Denos
,
B. R.
,
Sommer
,
D. E.
,
Favaloro
,
A. J.
,
Pipes
,
R. B.
, and
Avery
,
W. B.
,
2018
, “
Fiber Orientation Measurement From Mesoscale CT Scans of Prepreg Platelet Molded Composites
,”
Composites, Part A
,
114
, pp.
241
249
.
24.
Larson
,
R. A.
,
Hoque
,
R.
,
Jamora
,
V.
,
Li
,
J.
,
Kravchenko
,
O.
, and
Kravchenko
,
S.
,
in press
, “
Recognition of Local Fiber Orientation State in Prepreg Platelet Molded Composites via Deep Convolutional Neural Network
,”
Eng. Appl. Artif. Intell.
25.
Bhaduri
,
A.
,
Gupta
,
A.
,
Olivier
,
A.
, and
Graham-Brady
,
L.
,
2021
, “
An Efficient Optimization Based Microstructure Reconstruction Approach With Multiple Loss Functions
,”
Comput. Mater. Sci.
,
199
, p.
110709
.
26.
Seibert
,
P.
,
Raßloff
,
A.
,
Kalina
,
K.
,
Ambati
,
M.
, and
Kästner
,
M.
,
2022
, “
Microstructure Characterization and Reconstruction in Python: MCRpy
,”
Integr. Mater. Manuf. Innov.
,
11
(
3
), pp.
450
466
.
27.
Bessa
,
M. A.
,
Glowacki
,
P.
, and
Houlder
,
M.
,
2019
, “
Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
,”
Adv. Mater.
,
31
(
48
), p.
1904845
.
28.
Thakolkaran
,
P.
,
Joshi
,
A.
,
Zheng
,
Y.
,
Flaschel
,
M.
,
De Lorenzis
,
L.
, and
Kumar
,
S.
,
2022
, “
NN-EUCLID: Deep-Learning Hyperelasticity Without Stress Data
,”
J. Mech. Phys. Solids
,
169
, p.
105076
.
29.
Furtado
,
C.
,
Pereira
,
L. F.
,
Tavares
,
R. P.
,
Salgado
,
M.
,
Otero
,
F.
,
Catalanotti
,
G.
,
Arteiro
,
A.
,
Bessa
,
M. A.
, and
Camanho
,
P. P.
,
2021
, “
A Methodology to Generate Design Allowables of Composite Laminates Using Machine Learning
,”
Int. J. Solids Struct.
,
233
, p.
111095
.
30.
Liu
,
X.
,
Athanasiou
,
C. E.
,
Padture
,
N. P.
,
Sheldon
,
B. W.
, and
Gao
,
H.
,
2020
, “
A Machine Learning Approach to Fracture Mechanics Problems
,”
Acta Mater.
,
190
, pp.
105
112
.
31.
Athanasiou
,
C. E.
,
Liu
,
X.
,
Zhang
,
B.
,
Cai
,
T.
,
Ramirez
,
C.
,
Padture
,
N. P.
,
Lou
,
J.
,
Sheldon
,
B. W.
, and
Gao
,
H.
, “
Integrated Simulation, Machine Learning, and Experimental Approach to Characterizing Fracture Instability in Indentation Pillar-Splitting of Materials
,”
J. Mech. Phys. Solids
,
170
, p.
105092
.
32.
Dimiduk
,
D. M.
,
Holm
,
E. A.
, and
Niezgoda
,
S. R.
,
2018
, “
Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
,”
Integr. Mater. Manuf. Innov.
,
7
(
3
), pp.
157
172
.
33.
Escobar
,
C. A.
, and
Morales-Menendez
,
R.
,
2018
, “
Machine Learning Techniques for Quality Control in High Conformance Manufacturing Environment
,”
Adv. Mech. Eng.
,
10
(
2
), p.
168781401875551
.
34.
Haj-Ali
,
R.
,
Pecknold
,
D. A.
,
Ghaboussi
,
J.
, and
Voyiadjis
,
G. Z.
,
2001
, “
Simulated Micromechanical Models Using Artificial Neural Networks
,”
J. Eng. Mech.
,
127
(
7
), pp.
730
738
.
35.
Cang
,
R.
,
Li
,
H.
,
Yao
,
H.
,
Jiao
,
Y.
, and
Ren
,
Y.
,
2018
, “
Improving Direct Physical Properties Prediction of Heterogeneous Materials From Imaging Data via Convolutional Neural Network and a Morphology-Aware Generative Model
,”
Comput. Mater. Sci.
,
150
, pp.
212
221
.
36.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2018
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.
37.
Yang
,
Z.
,
Yabansu
,
Y. C.
,
Al-Bahrani
,
R.
,
Liao
,
W.-K.
,
Choudhary
,
A. N.
,
Kalidindi
,
S. R.
, and
Agrawal
,
A.
,
2018
, “
Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites From Simulation Datasets
,”
Comput. Mater. Sci.
,
151
, pp.
278
287
.
38.
Balokas
,
G.
,
Czichon
,
S.
, and
Rolfes
,
R.
,
2018
, “
Neural Network Assisted Multiscale Analysis for the Elastic Properties Prediction of 3D Braided Composites Under Uncertainty
,”
Compos. Struct.
,
183
, pp.
550
562
.
39.
Zobeiry
,
N.
,
Reiner
,
J.
, and
Vaziri
,
R.
,
2020
, “
Theory-Guided Machine Learning for Damage Characterization of Composites
,”
Compos. Struct.
,
246
, p.
112407
.
40.
Liu
,
X.
,
Tao
,
F.
, and
Yu
,
W.
,
2020
, “
A Neural Network Enhanced System for Learning Nonlinear Constitutive law and Failure Initiation Criterion of Composites Using Indirectly Measurable Data
,”
Compos. Struct.
,
252
, p.
112658
.
41.
Rocha
,
I. B. C. M.
,
Kerfriden
,
P.
, and
van der Meer
,
F. P.
,
2020
, “
Micromechanics-Based Surrogate Models for the Response of Composites: A Critical Comparison Between a Classical Mesoscale Constitutive Model, Hyper-Reduction and Neural Networks
,”
Eur. J. Mech. A/Solids
,
82
, p.
103995
.
42.
Yang
,
C.
,
Kim
,
Y.
,
Ryu
,
S.
, and
Gu
,
G. X.
,
2020
, “
Prediction of Composite Microstructure Stress-Strain Curves Using Convolutional Neural Networks
,”
Mater. Des.
,
189
, p.
108509
.
43.
Breuer
,
K.
, and
Stommel
,
M.
,
2021
, “
Prediction of Short Fiber Composite Properties by an Artificial Neural Network Trained on an RVE Database
,”
Fibers
,
9
(
2
), p.
8
.
44.
Garcia-Garcia
,
A.
,
Orts-Escolano
,
S.
,
Oprea
,
S.
,
Villena-Martinez
,
V.
,
Martinez-Gonzalez
,
P.
, and
Garcia-Rodriguez
,
J.
,
2018
, “
A Survey on Deep Learning Techniques for Image and Video Semantic Segmentation
,”
Appl. Soft Comput.
,
70
, pp.
41
65
.
45.
Yang
,
Z.
, and
Buehler
,
M. J.
,
2023
, “
Fill in the Blank: Transferrable Deep Learning Approaches to Recover Missing Physical Field Information
,”
Adv. Mater.
,
35
(
23
), p.
2301449
.
46.
Bhaduri
,
A.
,
Gupta
,
A.
, and
Graham-Brady
,
L.
,
2022
, “
Stress Field Prediction in Fiber-Reinforced Composite Materials Using a Deep Learning Approach
,”
Composites, Part B
,
238
, p.
109879
.
47.
Tang
,
Y.
,
Wang
,
Q.
,
Wang
,
H.
,
Li
,
J.
, and
Ke
,
Y.
,
2021
, “
A Novel 3D Laser Scanning Defect Detection and Measurement Approach for Automated Fibre Placement
,”
Meas. Sci. Technol.
,
32
(
7
), p.
075201
.
48.
Sreeshan
,
K.
,
Dinesh
,
R.
, and
Renji
,
K.
,
2020
, “
Nondestructive Inspection of Aerospace Composite Laminate Using Thermal Image Processing
,”
SN Appl. Sci.
,
2
(
11
), p.
1830
.
49.
Zambal
,
S.
,
Heindl
,
C.
,
Eitzinger
,
C.
, and
Scharinger
,
J.
,
2019
, “
End-to-End Defect Detection in Automated Fiber Placement Based on Artificially Generated Data
,”
Fourteenth International Conference on Quality Control by Artificial Vision
,
Mulhouse, France
,
May 15–17
, p.
68
.
50.
Sacco
,
C.
,
Baz Radwan
,
A.
,
Anderson
,
A.
,
Harik
,
R.
, and
Gregory
,
E.
,
2020
, “
Machine Learning in Composites Manufacturing: A Case Study of Automated Fiber Placement Inspection
,”
Compos. Struct.
,
250
, p.
112514
.
51.
Deep Learning
,”
Nature
, https://www.nature.com/articles/nature14539.
52.
Digimat—The Material Modeling Platform
,” https://www.mscsoftware.com/product/digimat, Accessed June 1, 2022.
53.
Abaqus 6.11 Abaqus/CAE User’s Manual
,” Dassault Systemes, Johnston, RI.
54.
Larson
,
R. A.
,
Hoque
,
R.
,
Jamora
,
V.
,
Li
,
J.
,
Kravchenko
,
O.
, and
Kravchenko
,
S.
,
2022
, “
Hyperparameters Effect in Deep Convolutional Neural Network Model on Prediction of Fiber Orientation Distribution in Prepreg Platelet Molded Composites
,”
AIAA SciTech 2022 Forum
,
San Diego, CA
,
Jan. 3–7
.
55.
Saquib
,
M. N.
,
Sattar
,
S.
,
Larson
,
R.
,
Li
,
J.
,
Kravchenko
,
S. G.
, and
Kravchenko
,
O. G.
,
2022
, “
Reconstruction of Full Fiber Orientation Distribution in Molded Composites Using Deep Learning
,”
SPE Automotive Composites Conference and Exhibition (ACCE)
,
Novi, MI
,
Sept. 9–11
.
56.
Żak
,
K.
,
2020
, “
karolzak/Keras-Unet
,” https://github.com/karolzak/keras-unet, Accessed November 15, 2022.
57.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,” http://lmb.informatik.uni-freiburg.de/.
58.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” http://arxiv.org/abs/1412.6980.
59.
GOM Correlate Professional V8 SR1 Manual Basic Inspection-3D Testing
,”
2015
, www.gom.com.
60.
Datta
,
P.
, “
All About Structural Similarity Index (SSIM): Theory + Code in PyTorch
,” SRM MIC | Medium, https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e, Accessed November 1, 2022.
61.
Ferreira
,
T.
, and
Rasband
,
W.
,
2012
, “
ImageJ User Guide ImageJ User Guide IJ 1.46r
,” http://fiji.sc/guide.git.
62.
EllipseFit 3 User Manual
,”
1997
.
You do not currently have access to this content.