Abstract

Interface fracture is a critical issue for next-generation rechargeable batteries. The integrity of the binder/active material interface is essential for successful battery operation, and the interface failure is a major capacity fade mechanism. In spite of the importance, no systematic study on understanding/characterization of this issue exists at present. Here, the interface fracture was studied using a model polyvinylidene fluoride (PVdF)/Si system due to its importance in future Li-ion batteries. The interface failure was characterized in terms of critical energy release rate Gc using an experimental technique based on blister test and Michelson interferometry. The effect of the oxide layer on the interface fracture was also quantified. The critical energy release rate Gc of PVdF/Si interface is 0.55 ± 0.14 Jm−2, and the presence of oxide layer at the interface increased the Gc by an order of magnitude higher, i.e., the Gc of PVdF/SiO2 interface is 2.46 ± 0.40 Jm−2. The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis of the fracture surfaces showed that the crack growth mechanism is adhesive for both interface systems, and the strong adhesion of PVdF to SiO2 surface is attributed to the nature of bonding, i.e., a higher concentration of silanol (Si-OH) group on the SiO2 surface as compared to the Si surface to which PVdF forms a bond with. The experimental methodology proposed here is more general and can be used to study the fracture behavior of interfaces in other electrode systems and with other battery chemistries.

References

1.
Mazouzi
,
D.
,
Karkar
,
Z.
,
Hernandez
,
C. R.
,
Manero
,
P. J.
,
Guyomard
,
D.
,
Roué
,
L.
,
Lestriez
,
B.
, et al
,
2015
, “
Critical Roles of Binders and Formulation at Multiscales of Silicon-Based Composite Electrodes
,”
J. Power Sources
,
280
, pp.
533
549
.
2.
Magasinski
,
A.
,
Zdyrko
,
B.
,
Kovalenko
,
I.
,
Hertzberg
,
B.
,
Burtovyy
,
R.
,
Huebner
,
C. F.
,
Fuller
,
T. F.
,
Luzinov
,
I.
, and
Yushin
,
G.
,
2010
, “
Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
,”
ACS Appl. Mater. Interfaces
,
2
(
11
), pp.
3004
3010
.
3.
Kasavajjula
,
U.
,
Wang
,
C.
, and
Appleby
,
A. J.
,
2007
, “
Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
,”
J. Power Sources
,
163
(
2
), pp.
1003
1039
.
4.
Hamon
,
Y.
,
Brousse
,
T.
,
Jousse
,
F.
,
Topart
,
P.
,
Buvat
,
P.
, and
Schleich
,
D. M.
,
2001
, “
Aluminum Negative Electrode in Lithium Ion Batteries
,”
J. Power Sources
,
97–98
, pp.
185
187
.
5.
Besenhard
,
J. O.
,
Yang
,
J.
, and
Winter
,
M.
,
1997
, “
Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?
,”
J. Power Sources
,
68
(
1
), pp.
87
90
.
6.
Obrovac
,
M. N.
, and
Christensen
,
L.
,
2004
, “
Structural Changes in Silicon Anodes During Lithium Insertion/Extraction
,”
Electrochem. Solid-State Lett.
,
7
(
5
), pp.
93
96
.
7.
Wang
,
H.
,
Tan
,
H.
,
Luo
,
X.
,
Wang
,
H.
,
Ma
,
T.
,
Lv
,
M.
,
Song
,
X.
,
Jin
,
S.
,
Chang
,
X.
, and
Li
,
X.
,
2020
, “
The Progress on Aluminum-Based Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
48
), pp.
25649
25662
.
8.
Beaulieu
,
L. Y.
,
Beattie
,
S. D.
,
Hatchard
,
T. D.
, and
Dahn
,
J. R.
,
2003
, “
The Electrochemical Reaction of Lithium With Tin Studied by in Situ AFM
,”
J. Electrochem. Soc.
,
150
(
4
), p.
A419
.
9.
Huggins
,
R. A.
, and
Nix
,
W. D.
,
2000
, “
Decrepitation Model for Capacity Loss During Cycling of Alloys in Rechargeable Electrochemical Systems
,”
Ionics
,
6
(
1–2
), pp.
57
63
.
10.
Nadimpalli
,
S. P. V.
,
Sethuraman
,
V. A.
,
Bucci
,
G.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2013
, “
On Plastic Deformation and Fracture in Si Films During Electrochemical Lithiation/Delithiation Cycling
,”
J. Electrochem. Soc.
,
160
(
10
), pp.
A1885
A1893
.
11.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2013
, “
Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
,”
Nano Lett.
,
13
(
11
), pp.
5570
5577
.
12.
Ryu
,
J. H.
,
Kim
,
J. W.
,
Sung
,
Y.-E.
, and
Oh
,
S. M.
,
2004
, “
Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries
,”
Electrochem. Solid-State Lett.
,
7
(
10
), p.
A306
.
13.
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1992
, “
Electrochemical and in Situ X-Ray Diffraction Studies of Lithium Intercalation in Li x CoO2
,”
J. Electrochem. Soc.
,
139
(
8
), pp.
2091
2097
.
14.
Zhang
,
X.
,
Sastry
,
A. M.
, and
Shyy
,
W.
,
2008
, “
Intercalation-Induced Stress and Heat Generation Within Single Lithium-Ion Battery Cathode Particles
,”
J. Electrochem. Soc.
,
155
(
7
), p.
A542
.
15.
Reynier
,
Y.
,
Yazami
,
R.
, and
Fultz
,
B.
,
2007
, “
XRD Evidence of Macroscopic Composition Inhomogeneities in the Graphite–Lithium Electrode
,”
J. Power Sources
,
165
(
2
), pp.
616
619
.
16.
Qi
,
Y.
,
Guo
,
H.
,
Hector
,
L. G.
, and
Timmons
,
A.
,
2010
, “
Threefold Increase in the Young’s Modulus of Graphite Negative Electrode During Lithium Intercalation
,”
J. Electrochem. Soc.
,
157
(
5
), p.
A558
.
17.
Chen
,
Z.
,
Christensen
,
L.
, and
Dahn
,
J. R.
,
2003
, “
Large-Volume-Change Electrodes for Li-Ion Batteries of Amorphous Alloy Particles Held by Elastomeric Tethers
,”
Electrochem. Commun.
,
5
(
11
), pp.
919
923
.
18.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
.
19.
Müller
,
S.
,
Wood
,
V.
,
Baade
,
P.
,
Brandt
,
B.-E.
,
De Carlo
,
F.
,
Pietsch
,
P.
,
De Andrade
,
V.
, et al
,
2018
, “
Quantification and Modeling of Mechanical Degradation in Lithium-Ion Batteries Based on Nanoscale Imaging
,”
Nat. Commun.
,
9
(
1
), p.
2340
.
20.
Sethuraman
,
V. A.
,
Nguyen
,
A.
,
Chon
,
M. J.
,
Nadimpalli
,
S. P. V.
,
Wang
,
H.
,
Abraham
,
D. P.
,
Bower
,
A. F.
,
Shenoy
,
V. B.
, and
Guduru
,
P. R.
,
2013
, “
Stress Evolution in Composite Silicon Electrodes During Lithiation/Delithiation
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A739
A746
.
21.
Taft
,
E. A.
,
1988
, “
Growth of Native Oxide on Silicon
,”
J. Electrochem. Soc.
,
135
(
4
), pp.
1022
1023
.
22.
Morita
,
M.
,
Ohmi
,
T.
,
Hasegawa
,
E.
,
Kawakami
,
M.
, and
Ohwada
,
M.
,
1990
, “
Growth of Native Oxide on a Silicon Surface
,”
J. Appl. Phys.
,
68
(
3
), pp.
1272
1281
.
23.
Drofenik
,
J.
,
Gaberscek
,
M.
,
Dominko
,
R.
,
Poulsen
,
F. W.
,
Mogensen
,
M.
,
Pejovnik
,
S.
, and
Jamnik
,
J.
,
2003
, “
Cellulose as a Binding Material in Graphitic Anodes for Li Ion Batteries: A Performance and Degradation Study
,”
Electrochim. Acta
,
48
(
7
), pp.
883
889
.
24.
Chen
,
Z.
,
Christensen
,
L.
, and
Dahn
,
J. R.
,
2003
, “
Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
150
(
8
), p.
A1073
.
25.
Yoo
,
M.
,
Frank
,
C. W.
,
Mori
,
S.
, and
Yamaguchi
,
S.
,
2003
, “
Effect of Poly(Vinylidene Fluoride) Binder Crystallinity and Graphite Structure on the Mechanical Strength of the Composite Anode in a Lithium Ion Battery
,”
Polymer
,
44
(
15
), pp.
4197
4204
.
26.
Kovalenko
,
I.
,
Zdyrko
,
B.
,
Magasinski
,
A.
,
Hertzberg
,
B.
,
Milicev
,
Z.
,
Burtovyy
,
R.
,
Luzinov
,
I.
, and
Yushin
,
G.
,
2011
, “
A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
,”
Science
,
334
(
6052
), pp.
75
79
.
27.
Chen
,
J.
,
Liu
,
J.
,
Li
,
X.
,
Qi
,
Y.
, and
Sun
,
T.
,
2013
, “
Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1502
A1509
.
28.
Kierzek
,
K.
,
2016
, “
Influence of Binder Adhesion Ability on the Performance of Silicon/Carbon Composite as Li-Ion Battery Anode
,”
J. Mater. Eng. Perform.
,
25
(
6
), pp.
2326
2330
.
29.
Hu
,
J.
,
Wang
,
Y.
,
Li
,
D.
, and
Cheng
,
Y. T.
,
2018
, “
Effects of Adhesion and Cohesion on the Electrochemical Performance and Durability of Silicon Composite Electrodes
,”
J. Power Sources
,
397
, pp.
223
230
.
30.
Yoo
,
M.
,
Frank
,
C. W.
,
Mori
,
S.
, and
Yamaguchi
,
S.
,
2004
, “
Interaction of Poly(Vinylidene Fluoride) With Graphite Particles. 2. Effect of Solvent Evaporation Kinetics and Chemical Properties of PVDF on the Surface Morphology of a Composite Film and Its Relation to Electrochemical Performance
,”
Chem. Mater.
,
16
(
10
), pp.
1945
1953
.
31.
Lee
,
J.-I.
,
Kang
,
H.
,
Park
,
K. H.
,
Shin
,
M.
,
Hong
,
D.
,
Cho
,
H. J.
,
Kang
,
N.-R.
, et al
,
2016
, “
Amphiphilic Graft Copolymers as a Versatile Binder for Various Electrodes of High-Performance Lithium-Ion Batteries
,”
Small
,
12
(
23
), pp.
3119
3127
.
32.
Fu
,
L. J.
,
Liu
,
H.
,
Li
,
C.
,
Wu
,
Y. P.
,
Rahm
,
E.
,
Holze
,
R.
, and
Wu
,
H. Q.
,
2006
, “
Surface Modifications of Electrode Materials for Lithium Ion Batteries
,”
Solid State Sci.
,
8
(
2
), pp.
113
128
.
33.
Feng
,
T.
,
Xu
,
Y.
,
Zhang
,
Z.
,
Du
,
X.
,
Sun
,
X.
,
Xiong
,
L.
,
Rodriguez
,
R.
, and
Holze
,
R.
,
2016
, “
Low-Cost Al2O3 Coating Layer as a Preformed SEI on Natural Graphite Powder to Improve Coulombic Efficiency and High-Rate Cycling Stability of Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
8
(
10
), pp.
6512
6519
.
34.
Li
,
C.
,
Zhang
,
H. P.
,
Fu
,
L. J.
,
Liu
,
H.
,
Wu
,
Y. P.
,
Rahm
,
E.
,
Holze
,
R.
, and
Wu
,
H. Q.
,
2006
, “
Cathode Materials Modified by Surface Coating for Lithium Ion Batteries
,”
Electrochim. Acta
,
51
(
19
), pp.
3872
3883
.
35.
Hu
,
Y.-S.
,
Demir-Cakan
,
R.
,
Titirici
,
M.-M.
,
Müller
,
J.-O.
,
Schlögl
,
R.
,
Antonietti
,
M.
, and
Maier
,
J.
,
2008
, “
Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries
,”
Angew. Chem., Int. Ed.
,
47
(
9
), pp.
1645
1649
.
36.
Su
,
L.
,
Zhou
,
Z.
, and
Ren
,
M.
,
2010
, “
Core Double-Shell Si@SiO2@C Nanocomposites as Anode Materials for Li-Ion Batteries
,”
Chem. Commun.
,
46
(
15
), p.
2590
.
37.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Ryu
,
I.
,
Wu
,
H.
,
Nix
,
W. D.
,
Choi
,
J. W.
, and
Cui
,
Y.
,
2011
, “
Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes
,”
Nano Lett.
,
11
(
9
), pp.
4018
4025
.
38.
Rakshit
,
S.
,
Tripuraneni
,
R.
, and
Nadimpalli
,
S. P. V.
,
2018
, “
Real-Time Stress Measurement in SiO2 Thin Films During Electrochemical Lithiation/Delithiation Cycling
,”
Exp. Mech.
,
58
(
4
), pp.
537
547
.
39.
Liu
,
Z.
,
Yu
,
Q.
,
Zhao
,
Y.
,
He
,
R.
,
Xu
,
M.
,
Feng
,
S.
,
Li
,
S.
,
Zhou
,
L.
, and
Mai
,
L.
,
2019
, “
Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
48
(
1
), pp.
285
309
.
40.
Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai 200235, China
, and
Huang
,
H.
,
2016
, “
The Effect of Commercialized Binders on Silicon Oxide Anode Material for High Capacity Lithium Ion Batteries
,”
Int. J. Electrochem. Sci.
,
11
(
10
), pp.
8697
8708
.
41.
Kaneko
,
R.
,
Froemel
,
J.
, and
Tanaka
,
S.
,
2018
, “
PVDF—TrFE/SiO2 Composite Film Bulk Acoustic Resonator for Frequency-Modulated Sensor Application
,”
2018 IEEE International Ultrasonics Symposium (IUS)
, Kobe, Japan, Oct. 22–25, pp.
1
4
.
42.
Pakhare
,
A. S.
, and
Nadimpalli
,
S. P. V.
,
2023
, “
Characterization and Prediction of Polymer/Active Material Interface Failure in Battery Electrodes
,”
Exp. Mech.
,
63
(
2
),
363
376
.
43.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials
,
Cambridge University Press
.
44.
Jensen
,
H. M.
, and
Thouless
,
M. D.
,
1993
, “
Effects of Residual Stresses in the Blister Test
,”
Int. J. Solids Struct.
,
30
(
6
), pp.
779
795
.
45.
Thouless
,
M. D.
, and
Jensen
,
H. M.
,
1994
, “
The Effect of Residual Stresses on Adhesion Measurements
,”
J. Adhes. Sci. Technol.
,
8
(
6
), pp.
579
586
.
46.
Guo
,
S.
,
Wan
,
K. T.
, and
Dillard
,
D. A.
,
2005
, “
A Bending-to-Stretching Analysis of the Blister Test in the Presence of Tensile Residual Stress
,”
Int. J. Solids Struct.
,
42
(
9–10
), pp.
2771
2784
.
47.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.
48.
Stoney
,
G. G.
,
1909
, “
The Tension of Metallic Films Deposited by Electrolysis
,”
Proc. R. Soc. Lond. Ser., A
,
82
(
553
), pp.
172
175
.
49.
ABAQUS/Standard 2020, SIMULIA, Dassault Systems, Providence, RI.
50.
Santimetaneedol
,
A.
,
Tripuraneni
,
R.
,
Chester
,
S. A.
, and
Nadimpalli
,
S. P. V.
,
2016
, “
Time-Dependent Deformation Behavior of Polyvinylidene Fluoride Binder: Implications on the Mechanics of Composite Electrodes
,”
J. Power Sources
,
332
, pp.
118
128
.
51.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What Is the Young’s Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.
52.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Application
,
CRC Press
,
Boca Raton, FL
.
53.
Hutchinson
,
J. W.
,
1968
, “
Singular Behaviour at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
13
31
.
54.
Raju
,
I. S.
,
1987
, “
Calculation of Strain-Energy Release Rates With Higher Order and Singular Finite Elements
,”
Eng. Fract. Mech.
,
28
(
3
), pp.
251
274
.
55.
Ghanem
,
M.
,
Göken
,
M.
, and
Merle
,
B.
,
2017
, “
Plane-Strain Bulge Testing of Thin Films Under Compressive Residual Stresses
,”
Surf. Coat. Technol.
,
327
, pp.
167
173
.
56.
Ziebart
,
V.
,
Paul
,
O.
, and
Baltes
,
H.
,
1999
, “
Strongly Buckled Square Micromachined Membranes
,”
J. Microelectromech. Syst.
,
8
(
4
), pp.
423
432
.
57.
Small
,
M. K.
, and
Nix
,
W. D.
,
1992
, “
Analysis of the Accuracy of the Bulge Test in Determining the Mechanical Properties of Thin Films
,”
J. Mater. Res.
,
7
(
6
), pp.
1553
1563
.
58.
Kinloch
,
A. J.
,
1987
,
Adhesion and Adhesives
,
Springer Netherlands
,
Dordrecht
.
59.
Swadener
,
J. G.
,
Liechti
,
K. M.
, and
Lozanne
,
A. L. D.
,
1999
, “
The Intrinsic Toughness and Adhesion Mechanisms of a Glass/Epoxy Interface
,”
J. Mech. Phys. Solids
,
47
(
2
), pp.
223
258
.
60.
Guo
,
J.
,
Zhai
,
W.
,
Sun
,
Q.
,
Ai
,
Q.
,
Li
,
J.
,
Cheng
,
J.
,
Dai
,
L.
, and
Ci
,
L.
,
2020
, “
Facilely Tunable Core-Shell Si@SiOx Nanostructures Prepared in Aqueous Solution for Lithium Ion Battery Anode
,”
Electrochim. Acta
,
342
, p.
136068
.
61.
Guo
,
S.
,
Li
,
H.
,
Li
,
Y.
,
Han
,
Y.
,
Chen
,
K.
,
Xu
,
G.
,
Zhu
,
Y.
, and
Hu
,
X.
,
2018
, “
SiO2-Enhanced Structural Stability and Strong Adhesion With a New Binder of Konjac Glucomannan Enables Stable Cycling of Silicon Anodes for Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
24
), p.
1800434
.
62.
Yoo
,
M.
,
Frank
,
C. W.
, and
Mori
,
S.
,
2003
, “
Interaction of Poly(Vinylidene Fluoride) With Graphite Particles. 1. Surface Morphology of a Composite Film and Its Relation to Processing Parameters
,”
Chem. Mater.
,
15
(
4
), pp.
850
861
.
63.
Li
,
J.
,
Lewis
,
R. B.
, and
Dahn
,
J. R.
,
2006
, “
Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
10
(
2
), p.
A17
.
64.
Dintzis
,
F. R.
,
Babcock
,
G. E.
, and
Tobin
,
R.
,
1970
, “
Studies on Dilute Solutions and Dispersion of the Polysaccharide From Xanthomonas Campestris NRRL B-1459
,”
Carbohydr. Res.
,
13
(
2
), pp.
257
267
.
65.
Liu
,
J.
,
Zhang
,
Q.
,
Zhang
,
T.
,
Li
,
J.-T.
,
Huang
,
L.
, and
Sun
,
S.-G.
,
2015
, “
A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries
,”
Adv. Funct. Mater.
,
25
(
23
), pp.
3599
3605
.
66.
Bie
,
Y.
,
Yang
,
J.
,
Nuli
,
Y.
, and
Wang
,
J.
,
2017
, “
Natural Karaya Gum as an Excellent Binder for Silicon-Based Anodes in High-Performance Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
5
(
5
), pp.
1919
1924
.
67.
Allen
,
M. G.
, and
Senturia
,
S. D.
,
1988
, “
Analysis of Critical Debonding Pressures of Stressed Thin Films in the Blister Test
,”
J. Adhes.
,
25
(
4
), pp.
303
315
.
68.
Li
,
X.
,
Kasai
,
T.
,
Nakao
,
S.
,
Tanaka
,
H.
,
Ando
,
T.
,
Shikida
,
M.
, and
Sato
,
K.
,
2005
, “
Measurement for Fracture Toughness of Single Crystal Silicon Film With Tensile Test
,”
Sens. Actuators, A
,
119
(
1
), pp.
229
235
.
69.
Fitzgerald
,
A. M.
,
Dauskardt
,
R. H.
, and
Kenny
,
T. W.
,
2000
, “
Fracture Toughness and Crack Growth Phenomena of Plasma-Etched Single Crystal Silicon
,”
Sens. Actuators, A
,
83
(
1
), pp.
194
199
.
70.
Ghidelli
,
M.
,
Sebastiani
,
M.
,
Johanns
,
K. E.
, and
Pharr
,
G. M.
,
2017
, “
Effects of Indenter Angle on Micro-Scale Fracture Toughness Measurement by Pillar Splitting
,”
J. Am. Ceram. Soc.
,
100
(
12
), pp.
5731
5738
.
71.
Chen
,
H.
,
Ling
,
M.
,
Hencz
,
L.
,
Ling
,
H. Y.
,
Li
,
G.
,
Lin
,
Z.
,
Liu
,
G.
, and
Zhang
,
S.
,
2018
, “
Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices
,”
Chem. Rev.
,
118
(
18
), pp.
8936
8982
.
72.
McCafferty
,
E.
, and
Wightman
,
J. P.
,
1998
, “
Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method
,”
Surf. Interface Anal.
,
26
(
8
), pp.
549
564
.
73.
Zhuravlev
,
L. T.
,
1987
, “
Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas
,”
Langmuir
,
3
(
3
), pp.
316
318
.
You do not currently have access to this content.