Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Transformation between saddle- and dome-like bending shapes of regular and reentrant hexagonal honeycomb panels are explored. An analytical model is proposed to uncover the underlying mechanisms and identify the controlling parameter when the cell walls are slender beams. Then, 3D finite element simulations are performed to examine the architecture dependence of bending shape and construct the phase diagrams of anticlastic and synclastic curvatures when the cell walls have a general geometry. The results are believed helpful to the design and application of related honeycomb structures.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
2.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. A
,
382
(
1782
), pp.
25
42
.
3.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
4.
Evans
,
K. E.
,
1991
, “
The Design of Doubly-Curved Sandwich Panels With Honeycomb Cores
,”
Comps. Struct.
,
17
(
2
), pp.
95
111
.
5.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
6.
Burke
,
M.
,
1997
, “
A Stretch of the Imagination
,”
New Scientist
,
154
(
2085
), pp.
36
39
.
7.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking
,”
Adv. Mater.
,
12
(
9
), pp.
617
628
.
8.
Lakes
,
R. S.
, and
Witt
,
R.
,
2002
, “
Making and Characterizing Negative Poisson's Ratio Materials
,”
Int. J. Mech. Eng. Edu.
,
30
(
1
), pp.
50
58
.
9.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
Proc. Inst. Mech. Eng., Part G, J. Aero. Eng.
,
221
(
4
), pp.
565
575
.
10.
Yao
,
Y.
,
Ni
,
Y.
, and
He
,
L. H.
,
2023
, “
Unexpected Bending Behavior of Architected 2D Lattice Materials
,”
Sci. Adv.
,
9
(
25
), p.
eadg3499
.
11.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
12.
Lim
,
T. C.
,
2007
, “
On Simultaneous Positive and Negative Poisson's Ratio Laminates
,”
Phys. Status Solidi B
,
244
(
3
), pp.
910
918
.
13.
McInerney
,
J.
,
Paulino
,
G. H.
, and
Rocklin
,
D. Z.
,
2022
, “
Discrete Symmetries Control Geometric Mechanics in Parallelogram-Based Origami
,”
Proc. Natl. Acad. Sci. USA
,
119
(
32
), p.
e2202777119
.
14.
Vasudevan
,
S. P.
, and
Pratapa
,
P. P.
,
2024
, “
Homogenization of Non-Rigid Origami Metamaterials as Kirchhoff–Love Plates
,”
Int. J. Solids Struct.
,
300
, p.
112929
.
15.
Nassar
,
H.
,
2024
, “
How Periodic Surfaces Bend
,”
Phil. Trans. R. Soc. A
,
382
(
2283
), p.
20240016
.
You do not currently have access to this content.