Abstract

Elastocapillarity describes the self-organization of elastic structures under liquid surface forces, for applications to micro- and nanoscale self-assembly. It has recently become evident that precise prediction of elastocapillary self-assembly is challenged by the various phenomena arising due to fluid flow. In this study, we present experiments and a corresponding reduced-order model for the dynamic coalescence of flexible lamellae arrays. Vertical arrays of elastomeric lamellae attached to a substrate at the bottom are fabricated using 3D-printed molds. The lamellae have sub-mm thickness and a few millimeters height, a size scale that cannot be achieved by traditional microfabrication. The gaps between the elastic lamellae are filled with liquid while the tips of the lamellae, which are at the top with respect to gravity, are initially fixed, and then, they are released which leads to their spontaneous bending and coalescence. We study the cluster size as a function of system variables both experimentally and numerically. The solid lamellae are modeled as discrete rigid elements connected by torsional springs to the substrate, while the fluid flow uses lubrication theory and capillarity. Importantly, the model incorporates the gravitational forces to effectively capture the systems’ behavior ranging from the microscale with negligible gravity effect to the macroscale where gravity significantly influences the dynamics. We further derive a linearized continuum model from our nonlinear formulation, providing an analytical universal scaling law for the lamellae cluster size. This work is relevant for new polymorphic fins and lamellae devices, capillary self-folding and origami.

References

1.
Bico
,
J.
,
Roman
,
B.
,
Moulin
,
L.
, and
Boudaoud
,
A.
,
2004
, “
Elastocapillary Coalescence in Wet Hair
,”
Nature
,
432
(
7018
), pp.
690
690
.
2.
Py
,
C.
,
Bastien
,
R.
,
Bico
,
J.
,
Roman
,
B.
, and
Boudaoud
,
A.
,
2007
, “
3D Aggregation of Wet Fibers
,”
Europhys. Lett. (EPL)
,
77
(
4
), p.
44005
.
3.
Fei
,
Y. R.
,
Maia
,
H. T.
,
Batty
,
C.
,
Zheng
,
C.
, and
Grinspun
,
E.
,
2017
, “
A Multi-Scale Model for Simulating Liquid-Hair Interactions
,”
ACM Trans. Graphics
,
36
(
4
), pp.
1
17
.
4.
Meng
,
Q.
,
Wang
,
Q.
,
Liu
,
H.
, and
Jiang
,
L.
,
2014
, “
A Bio-Inspired Flexible Fiber Array With An Open Radial Geometry for Highly Efficient Liquid Transfer
,”
NPG Asia. Mater.
,
6
(
9
), pp.
e125
e125
.
5.
Bico
,
J.
,
Reyssat
,
É.
, and
Roman
,
B.
,
2018
, “
Elastocapillarity: When Surface Tension Deforms Elastic Solids
,”
Annu. Rev. Fluid. Mech.
,
50
(
1
), pp.
629
659
.
6.
Volder
,
M. D.
,
Tawfick
,
S. H.
,
Park
,
S. J.
,
Copic
,
D.
,
Zhao
,
Z.
,
Lu
,
W.
, and
Hart
,
A. J.
,
2010
, “
Diverse 3D Microarchitectures Made by Capillary Forming of Carbon Nanotubes
,”
Adv. Mater.
,
22
(
39
), pp.
4384
4389
.
7.
Raccurt
,
O.
,
Tardif
,
F.
, and
Vareine
,
T.
,
2004
, “
Influence of Liquid Surface Tension on Stiction of SOI MEMS
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
1083
1090
.
8.
Ha
,
J.
,
Kim
,
Y. S.
,
Li
,
C.
,
Hwang
,
J.
,
Leung
,
S. C.
,
Siu
,
R.
, and
Tawfick
,
S.
,
2023
, “
Polymorphic Display and Texture Integrated Systems Controlled by Capillarity
,”
Sci. Adv.
,
9
(
26
), p.
eadh1321
.
9.
Chandra
,
D.
,
Yang
,
S.
,
Soshinsky
,
A. A.
, and
Gambogi
,
R. J.
,
2009
, “
Biomimetic Ultrathin Whitening by Capillary-Force-Induced Random Clustering of Hydrogel Micropillar Arrays
,”
ACS Appl. Mater. Interfaces
,
1
(
8
), pp.
1698
1704
.
10.
Boudaoud
,
A.
,
Bico
,
J.
, and
Roman
,
B.
,
2007
, “
Elastocapillary Coalescence: Aggregation and Fragmentation With a Maximal Size
,”
Phys. Rev. E
,
76
(
6
), p.
060102
.
11.
Liu
,
J.-L.
,
Feng
,
X.-Q.
,
Xia
,
R.
, and
Zhao
,
H.-P.
,
2007
, “
Hierarchical Capillary Adhesion of Microcantilevers or Hairs
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), pp.
5564
5570
.
12.
Bernardino
,
N. R.
, and
Dietrich
,
S.
,
2012
, “
Complete Wetting of Elastically Responsive Substrates
,”
Phys. Rev. E
,
85
(
5
), p.
051603
.
13.
Takahashi
,
K.
,
Matsuo
,
T.
,
Inaba
,
K.
, and
Kishimoto
,
K.
,
2019
, “
Bending Deformation of Multiple Aligned Plates Toward Coalescence Induced by Capillarity
,”
J. Microelectromech. Syst.
,
28
(
4
), pp.
685
694
.
14.
Kim
,
H.-Y.
, and
Mahadevan
,
L.
,
2006
, “
Capillary Rise Between Elastic Sheets
,”
J. Fluid Mech.
,
548
, p.
141
.
15.
Cambau
,
T.
,
Bico
,
J.
, and
Reyssat
,
E.
,
2011
, “
Capillary Rise Between Flexible Walls
,”
EPL (Europhys. Lett.)
,
96
(
2
), p.
24001
.
16.
Aristoff
,
J. M.
,
Duprat
,
C.
, and
Stone
,
H. A.
,
2011
, “
Elastocapillary Imbibition
,”
Int. J. Non-Linear Mech.
,
46
(
4
), pp.
648
656
.
17.
Nasouri
,
B.
,
Thorne
,
B.
, and
Elfring
,
G. J.
,
2019
, “
Dynamics of Poroelastocapillary Rise
,”
J. Fluids Struct.
,
85
, pp.
220
228
.
18.
Duprat
,
C.
,
Aristoff
,
J. M.
, and
Stone
,
H. A.
,
2011
, “
Dynamics of Elastocapillary Rise
,”
J. Fluid Mech.
,
679
, pp.
641
654
.
19.
Gat
,
A. D.
, and
Gharib
,
M.
,
2013
, “
Elasto-Capillary Coalescence of Multiple Parallel Sheets
,”
J. Fluid. Mech.
,
723
, pp.
692
705
.
20.
Singh
,
K.
,
Lister
,
J. R.
, and
Vella
,
D.
,
2014
, “
A Fluid-Mechanical Model of Elastocapillary Coalescence
,”
J. Fluid Mech.
,
745
, pp.
621
646
.
21.
Hadjittofis
,
A.
,
Lister
,
J. R.
,
Singh
,
K.
, and
Vella
,
D.
,
2016
, “
Evaporation Effects in Elastocapillary Aggregation
,”
J. Fluid Mech.
,
792
, pp.
168
185
.
22.
Wei
,
Z.
,
Schneider
,
T. M.
,
Kim
,
J.
,
Kim
,
H.-Y.
,
Aizenberg
,
J.
, and
Mahadevan
,
L.
,
2015
, “
Elastocapillary Coalescence of Plates and Pillars
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
471
(
2175
), p.
20140593
.
23.
Panton
,
R. L.
,
2013
,
Incompressible Flow
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.