Abstract

This paper presents the optimization frameworks for designing cellular internal structures of an aircraft wing subjected to aerodynamic loads. Inspired by natural cellular materials, this study employs lattice and foam cells as the internal structures of the aircraft wing. The distribution of the cell materials is optimized by minimizing the mass and maximizing the stiffness while avoiding the global buckling of the wing. The optimization variables for the lattice structure are the cell size distribution field and the strut radii (or cell face thicknesses). Various weighting factor combinations are applied to the two competing objectives to obtain the optimal solution, considering different priorities of reducing mass or increasing stiffness. The results demonstrate that the wings with optimized cellular internal structures have higher structural efficiency than the reference wings with uniform cellular internal structures. The optimized wings also achieve higher structural efficiency than conventional wing designs when requiring heavy loading or a balanced tradeoff between load-bearing capacity and mass.

References

1.
Zhu
,
L.
,
Li
,
N.
, and
Childs
,
P.
,
2018
, “
Light-Weighting in Aerospace Component and System Design
,”
Propuls. Power Res.
,
7
(
2
), pp.
103
119
.
2.
Del Olmo
,
E.
,
Grande
,
E.
,
Samartin
,
C.
,
Bezdenejnykh
,
M.
,
Torres
,
J.
,
Blanco
,
N.
,
Frovel
,
M.
, and
Canas
,
J.
,
2012
, “
Lattice Structures for Aerospace Applications
,”
Proceedings of the 12th European Conference on Spacecraft Structures, Materials and Environmental Testing
,
Noordwijk, Netherlands
,
Mar. 20–23
, p.
6
.
3.
Gibson
,
L. J.
,
1989
, “
Modelling the Mechanical Behavior of Cellular Materials
,”
Mater. Sci. Eng. A
,
110
, pp.
1
36
.
4.
Ashby
,
M. F.
, and
Medalist
,
R. M.
,
1983
,
The Mechanical Properties of Cellular Solids
,
Springer
,
New York
.
5.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
.
6.
Sullivan
,
T. N.
,
Wang
,
B.
,
Espinosa
,
H. D.
, and
Meyers
,
M. A.
,
2017
, “
Extreme Lightweight Structures: Avian Feathers and Bones
,”
Mater. Today
,
20
(
7
), pp.
377
391
.
7.
Aage
,
N.
,
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
.
8.
Bhate
,
D.
,
2019
, “
Four Questions in Cellular Material Design
,”
Materials
,
12
(
7
), p.
1060
.
9.
Park
,
K.-M.
,
Min
,
K.-S.
, and
Roh
,
Y.-S.
,
2022
, “
Design Optimization of Lattice Structures Under Compression: Study of Unit Cell Types and Cell Arrangements
,”
Materials
,
15
(
1
), p.
97
.
10.
Robbins
,
J.
,
Owen
,
S.
,
Clark
,
B.
, and
Voth
,
T.
,
2016
, “
An Efficient and Scalable Approach for Generating Topologically Optimized Cellular Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
(
Part B
), pp.
296
304
.
11.
Telgen
,
B.
,
Sigmund
,
O.
, and
Kochmann
,
D. M.
,
2022
, “
Topology Optimization of Graded Truss Lattices Based on On-the-Fly Homogenization
,”
ASME J. Appl. Mech.
,
89
(
6
), p.
061006
.
12.
Tamijani
,
A. Y.
,
Velasco
,
S. P.
, and
Alacoque
,
L.
,
2020
, “
Topological and Morphological Design of Additively-Manufacturable Spatially-Varying Periodic Cellular Solids
,”
Mater. Des.
,
196
, p.
109155
.
13.
Cheng
,
L.
,
Zhang
,
P.
,
Biyikli
,
E.
,
Bai
,
J.
,
Robbins
,
J.
, and
To
,
A.
,
2017
, “
Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing: Theory and Experimental Validation
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
660
677
.
14.
Chen
,
W.
,
Watts
,
S.
,
Jackson
,
J. A.
,
Smith
,
W. L.
,
Tortorelli
,
D. A.
, and
Spadaccini
,
C. M.
,
2019
, “
Stiff Isotropic Lattices Beyond the Maxwell Criterion
,”
Sci. Adv.
,
5
(
9
), p.
eaaw1937
.
15.
Yi
,
B.
,
Zhou
,
Y.
,
Yoon
,
G. H.
, and
Saitou
,
K.
,
2019
, “
Topology Optimization of Functionally-Graded Lattice Structures With Buckling Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
354
, pp.
593
619
.
16.
Jia
,
Y.
,
Meng
,
W.
,
Du
,
Z.
,
Liu
,
C.
,
Li
,
S.
,
Wang
,
C.
,
Ge
,
Z.
,
Su
,
R.
, and
Guo
,
X.
,
2024
, “
Explicit Design Optimization of Air Rudders for Maximizing Stiffness and Fundamental Frequency
,”
Thin Walled Struct.
,
203
, p.
112152
.
17.
Zhou
,
Y.
,
Gao
,
L.
, and
Li
,
H.
,
2023
, “
Topology Optimization Design of Graded Infills for 3D Curved Volume by a Conformal Sweeping Method
,”
Comput. Methods Appl. Mech. Eng.
,
412
, p.
116009
.
18.
Gorguluarslan
,
R. M.
,
Gandhi
,
U. N.
,
Mandapati
,
R.
, and
Choi
,
S.-K.
,
2016
, “
Design and Fabrication of Periodic Lattice-Based Cellular Structures
,”
Comput.-Aided Des. Appl.
,
13
(
1
), pp.
50
62
.
19.
Zhang
,
M.
,
Zhao
,
C.
,
Li
,
G.
, and
Luo
,
K.
,
2023
, “
Mechanical Properties of the Composite Lattice Structure With Variable Density and Multi-configuration
,”
Compos. Struct.
,
304
(
Part 1
), p.
116405
.
20.
Bai
,
L.
,
Gong
,
C.
,
Chen
,
X.
,
Sun
,
Y.
,
Xin
,
L.
,
Pu
,
H.
,
Peng
,
Y.
, and
Luo
,
J.
,
2020
, “
Mechanical Properties and Energy Absorption Capabilities of Functionally Graded Lattice Structures: Experiments and Simulations
,”
Int. J. Mech. Sci.
,
182
, p.
105735
.
21.
Alkhader
,
M.
, and
Vural
,
M.
,
2008
, “
Mechanical Response of Cellular Solids: Role of Cellular Topology and Microstructural Irregularity
,”
Int. J. Eng. Sci.
,
46
(
10
), pp.
1035
1051
.
22.
Wang
,
G.
,
Shen
,
L.
,
Zhao
,
J.
,
Liang
,
H.
,
Xie
,
D.
,
Tian
,
Z.
, and
Wang
,
C.
,
2018
, “
Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing
,”
ACS Biomater. Sci. Eng.
,
4
(
2
), pp.
719
727
.
23.
Ćurković
,
P.
,
2021
, “
Optimization of Generatively Encoded Multi-material Lattice Structures for Desired Deformation Behavior
,”
Symmetry
,
13
(
2
), p.
293
.
24.
Kader
,
M. A.
,
Hazell
,
P. J.
,
Brown
,
A. D.
,
Tahtali
,
M.
,
Ahmed
,
S.
,
Escobedo
,
J. P.
, and
Saadatfar
,
M.
,
2020
, “
Novel Design of Closed-Cell Foam Structures for Property Enhancement
,”
Addit. Manuf.
,
31
, p.
100976
.
25.
Chen
,
Y.
,
Das
,
R.
, and
Battley
,
M.
,
2015
, “
Effects of Cell Size and Cell Wall Thickness Variations on the Stiffness of Closed-Cell Foams
,”
Int. J. Solids Struct.
,
52
, pp.
150
164
.
26.
Barbier
,
C.
,
Michaud
,
P.
,
Baillis
,
D.
,
Randrianalisoa
,
J.
, and
Combescure
,
A.
,
2014
, “
New Laws for the Tension/Compression Properties of Voronoi Closed-Cell Polymer Foams in Relation to Their Microstructure
,”
Eur. J. Mech.-A/Solids
,
45
, pp.
110
122
.
27.
Verma
,
K. S.
,
Muchhala
,
D.
,
Panthi
,
S. K.
, and
Mondal
,
D.
,
2022
, “
Influences of Cell Size, Cell Wall Thickness and Cell Circularity on the Compressive Responses of Closed-Cell Aluminum Foam and Its FEA Analysis
,”
Int. J. Metalcast.
,
16
(
2
), pp.
798
813
.
28.
Zhang
,
X.
,
Tang
,
L.
,
Liu
,
Z.
,
Jiang
,
Z.
,
Liu
,
Y.
, and
Wu
,
Y.
,
2017
, “
Yield Properties of Closed-Cell Aluminum Foam Under Triaxial Loadings by a 3D Voronoi Model
,”
Mech. Mater.
,
104
, pp.
73
84
.
29.
Niknam
,
H.
, and
Akbarzadeh
,
A.
,
2018
, “
In-Plane and Out-of-Plane Buckling of Architected Cellular Plates: Numerical and Experimental Study
,”
Compos. Struct.
,
206
, pp.
739
749
.
30.
Bhate
,
D.
,
Penick
,
C. A.
,
Ferry
,
L. A.
, and
Lee
,
C.
,
2019
, “
Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches
,”
Designs
,
3
(
1
), p.
19
.
31.
Megson
,
T. H. G.
,
2016
,
Aircraft Structures for Engineering Students
,
Butterworth-Heinemann
,
Oxford, UK
.
32.
Cramer
,
N. B.
,
Cellucci
,
D. W.
,
Formoso
,
O. B.
,
Gregg
,
C. E.
,
Jenett
,
B. E.
,
Kim
,
J. H.
,
Lendraitis
,
M.
, et al
,
2019
, “
Elastic Shape Morphing of Ultralight Structures by Programmable Assembly
,”
Smart Mater. Struct.
,
28
(
5
), p.
055006
.
33.
Jenett
,
B.
,
Calisch
,
S.
,
Cellucci
,
D.
,
Cramer
,
N.
,
Gershenfeld
,
N.
,
Swei
,
S.
, and
Cheung
,
K. C.
,
2017
, “
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
,”
Soft Rob.
,
4
(
1
), pp.
33
48
.
34.
Rodríguez-Panes
,
A.
,
Claver
,
J.
, and
Camacho
,
A. M.
,
2018
, “
The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis
,”
Materials
,
11
(
8
), p.
1333
.
35.
Drela
,
M.
,
2024
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Proceedings of the Low Reynolds Number Aerodynamics: Proceedings of the Conference
,
Notre Dame, IN
,
June 5–7
,
Springer
, pp.
1
12
.
36.
Schrenk
,
O.
,
1941
, “
A Simple Approximation Method for Obtaining the Spanwise Lift Distribution
,”
Aeronaut. J.
,
45
(
370
), pp.
331
336
.
37.
Moerman
,
K. M.
,
2018
, “
GIBBON: The Geometry and Image-Based Bioengineering Add-On
,”
J. Open Source Softw.
,
3
(
22
), pp.
506
.
38.
Hansen
,
N.
,
Müller
,
S. D.
, and
Koumoutsakos
,
P.
,
2003
, “
Reducing the Time Complexity of the Derandomized Evolution Strategy With Covariance Matrix Adaptation (CMA-ES)
,”
Evol. Comput.
,
11
(
1
), pp.
1
18
.
39.
Hansen
,
N.
,
2016
, “
The CMA Evolution Strategy: A Tutorial
,” arXiv preprint arXiv:1604.00772.
40.
Hansen
,
N.
, and
Kern
,
S.
,
2004
, “
Evaluating the CMA Evolution Strategy on Multimodal Test Functions
,”
Proceedings of the International Conference on Parallel Problem Solving From Nature
,
Birmingham, UK
,
Sept. 18–22
, Springer, pp.
282
291
.
41.
Anis
,
M.
,
Pendurkar
,
S.
,
Yi
,
Y. K.
, and
Sharon
,
G.
,
2023
, “
Comparison Between Popular Genetic Algorithm (GA)-Based Tool and Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) for Optimizing Indoor Daylight
,”
Proceedings of Building Simulation 2023: 18th Conference of IBPSA
,
Shanghai, China
,
Sept. 4–6
.
42.
Ning
,
X.
, and
Pellegrino
,
S.
,
2015
, “
Imperfection-Insensitive Axially Loaded Thin Cylindrical Shells
,”
Int. J. Solids Struct.
,
62
, pp.
39
51
.
43.
Gunantara
,
N.
,
2018
, “
A Review of Multi-objective Optimization: Methods and Its Applications
,”
Cogent Eng.
,
5
(
1
), pp.
1502242
.
44.
Ngatchou
,
P.
,
Zarei
,
A.
, and
El-Sharkawi
,
A.
,
2005
, “
Pareto Multi Objective Optimization
,”
Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems
,
Arlington, VA
,
Nov. 6–10
, IEEE, pp.
84
91
.
You do not currently have access to this content.