Graphical Abstract Figure

Geometry of a typical spherical shell with a Gaussian defect at the pole, clamped at its free boundary. (a) Meridian cross section of the shell, defining all the relevant geometric parameters. (b) Three-dimensional visualization of a partial shell in the spherical coordinate system; the color map represents the radial deviation, w, from a perfect sphere. (c) Parameterized Gaussian defect profile w(β) according to Eq. (3), for λI=1. The thick horizontal line represents angular width, lc/(Rβ0), associated with the theoretical buckling wavelength lc (see text) of the axisymmetric mode for this particular shell.

Graphical Abstract Figure

Geometry of a typical spherical shell with a Gaussian defect at the pole, clamped at its free boundary. (a) Meridian cross section of the shell, defining all the relevant geometric parameters. (b) Three-dimensional visualization of a partial shell in the spherical coordinate system; the color map represents the radial deviation, w, from a perfect sphere. (c) Parameterized Gaussian defect profile w(β) according to Eq. (3), for λI=1. The thick horizontal line represents angular width, lc/(Rβ0), associated with the theoretical buckling wavelength lc (see text) of the axisymmetric mode for this particular shell.

Close modal

Abstract

We present the results from a numerical investigation using the finite element method to study the buckling strength of near-perfect spherical shells containing a single, localized, Gaussian-dimple defect whose profile is systematically varied toward the limit of vanishing amplitude. In this limit, our simulations reveal distinct buckling behaviors for hemispheres, full spheres, and partial spherical caps. Hemispherical shells exhibit boundary-dominated buckling modes, resulting in a knockdown factor of 0.8. By contrast, full spherical shells display localized buckling at their pole with knockdown factors near unity. Furthermore, for partial spherical shells, we observed a transition from boundary modes to these localized buckling modes as a function of the cap angle. We characterize these behaviors by systematically examining the effects of the discretization level, solver parameters, and radius-to-thickness ratio on knockdown factors. Specifically, we identify the conditions under which knockdown factors converge across shell configurations. Our findings highlight the critical importance of carefully controlled numerical parameters in shell-buckling simulations in the near-perfect limit, demonstrating how precise choices in discretization and solver parameters are essential for accurately predicting the distinct buckling modes across different shell geometries.

References

1.
Thurston
,
G. A.
, and
Penning
,
F. A.
,
1966
, “
Effect of Axisymmetric Imperfections on the Buckling of Spherical Caps Under Uniform Pressure
,”
AIAA J.
,
4
(
2
), pp.
319
327
.
2.
Carlson
,
R. L.
,
Sendelbeck
,
R. L.
, and
Hoff
,
N. J.
,
1967
, “
Experimental Studies of the Buckling of Complete Spherical Shells
,”
Exp. Mech.
,
7
(
7
), pp.
281
288
.
3.
Weingarten
,
V. I.
,
Seide
,
P.
, and
Peterson
,
J. P.
,
1968
, “Buckling of Thin-Walled Circular Cylinders,” NTRS Author Affiliations: University of Southern California, Langley Research Center (LaRC), NTRS Research Center, NTRS Report/Patent Number: NASA-SP-8007, NTRS Document ID: 19690013955, https://ntrs.nasa.gov/citations/19690013955, Accessed September 26, 2024.
4.
Hilburger
,
M. W.
,
2020
, “Buckling of Thin-Walled Circular Cylinders,” NTRS Author Affiliations: Langley Research Center (LaRC), NTRS Research Center, NTRS Report/Patent Number: NASA-SP-8007-2020/REV 2, NTRS Document ID: 20205011530, https://ntrs.nasa.gov/citations/20205011530, Accessed September 26, 2024.
5.
Zoelly
,
R.
,
1915
, “
Über ein Knickungsproblem’ an der Kugelschale
,” Ph.D. thesis,
ETH Zurich
,
Zurich
.
6.
Von Karman
,
T.
, and
Tsien
,
H.-S.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
.
7.
Koiter
,
W. T.
,
1945
, “
Over de stabiliteit van het elastisch evenwicht
,” Ph.D. thesis,
Delft University of Technology
,
Delft
.
8.
Budiansky
,
B.
,
1959
, “Buckling of Clamped Shallow Spherical Shells,” Harvard University, Cambridge, MA, Technical Report TR-5.
9.
Huang
,
N.-C.
,
1964
, “
Unsymmetrical Buckling of Thin Shallow Spherical Shells
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
447
457
.
10.
Hutchinson
,
J. W.
,
1967
, “
Imperfection Sensitivity of Externally Pressurized Spherical Shells
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
49
55
.
11.
Kaplan
,
A.
,
1974
, “Buckling of Spherical Shells,”
Thin-Shell Structures; Theory, Experiment and Design: Proceedings
,
Y. C.
Fung
, and
E. E.
Sechler
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
248
288
(Meeting Name: Thin-Shell Structures Symposium).
12.
Bushnell
,
D.
,
1985
,
Computerized Buckling Analysis of Shells
(
Mechanics of Elastic Stability
), Vol. 9,
Springer Netherlands
,
Dordrecht
.
13.
Elishakoff
,
I.
,
2014
,
Resolution of the Twentieth Century Conundrum in Elastic Stability
,
World Scientific
,
Hackensack, NJ
.
14.
Hutchinson
,
J. W.
,
2016
, “
Buckling of Spherical Shells Revisited
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2195
), p.
20160577
.
15.
Kaplan
,
A.
, and
Fung
,
Y. C.
,
1954
, “A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells,” https://ntrs.nasa.gov/api/citations/19930084069/downloads/19930084069.pdf, Accessed October 17, 2024.
16.
Hutchinson
,
J. W.
, and
Koiter
,
W. T.
,
1970
, “
Postbuckling Theory
,”
Appl. Mech. Rev.
,
23
(
12
), pp.
1353
1366
.
17.
Bushnell
,
D.
,
1981
, “Computerized Buckling Analysis of Shells,” Air Force Wright Aeronautical Laboratories, Technical Report AFWAL-TR-81-3049.
18.
Lee
,
A.
,
López Jiménez
,
F.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.
19.
Jiménez
,
F. L.
,
Marthelot
,
J.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Technical Brief: Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
034501
.
20.
Parmerter
,
R. R.
, and
Fung
,
Y. C.
,
1962
, “On the Influence of Non-symmetrical Modes on the Buckling of Shallow Spherical Shells Under Uniform Pressure,” Collected Papers on Stability of Shell Structures-1962, National Aeronautics and Space Administration, https://ntrs.nasa.gov/citations/19630000968, Accessed October 24, 2024.
21.
Parmerter
,
R. R.
,
1964
, “
The Buckling of Clamped Shallow Spherical Shells Under Uniform Pressure
,” Ph.D. thesis,
California Institute of Technology
,
Pasadena, CA
.
22.
Thurston
,
G. A.
,
1964
, “
Asymmetrical Buckling of Spherical Caps Under Uniform Pressure
,”
AIAA J.
,
2
(
10
), pp.
1832
1833
.
23.
Ki
,
K.
,
Lee
,
J.
, and
Lee
,
A.
,
2024
, “
Combined Influence of Shallowness and Geometric Imperfection on the Buckling of Clamped Spherical Shells
,”
J. Mech. Phys. Solids
,
185
, p.
105554
.
24.
Koga
,
T.
, and
Hoff
,
N. J.
,
1969
, “
The Axisymmetric Buckling of Initially Imperfect Complete Spherical Shells
,”
Int. J. Solids Struct.
,
5
(
7
), pp.
679
697
.
25.
Lee
,
A.
,
Brun
,
P. T.
,
Marthelot
,
J.
,
Balestra
,
G.
,
Gallaire
,
F.
, and
Reis
,
P. M.
,
2016
, “
Fabrication of Slender Elastic Shells by the Coating of Curved Surfaces
,”
Nat. Commun.
,
7
(
1
), p.
11155
.
26.
Abbasi
,
A.
,
Derveni
,
F.
, and
Reis
,
P. M.
,
2023
, “
Comparing the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects
,”
ASME J. Appl. Mech.
,
90
(
6
), p.
061008
.
27.
Derveni
,
F.
,
Abbasi
,
A.
, and
Reis
,
P.
,
2023
, “
Defect–Defect Interactions in the Buckling of Imperfect Spherical Shells
,”
ASME J. Appl. Mech.
,
92
(
4
), p.
041003
.
28.
Derveni
,
F.
,
Gueissaz
,
W.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Probabilistic Buckling of Imperfect Hemispherical Shells Containing a Distribution of Defects
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
381
(
2244
), p.
20220298
.
29.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of a Pressurized Hemispherical Shell Subjected to a Probing Force
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121005
.
30.
Pezzulla
,
M.
, and
Reis
,
P. M.
,
2019
, “
A Weak Form Implementation of Nonlinear Axisymmetric Shell Equations With Examples
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
124502
.
31.
Yan
,
D.
,
Pezzulla
,
M.
, and
Reis
,
P. M.
,
2020
, “
Buckling of Pressurized Spherical Shells Containing a Through-Thickness Defect
,”
J. Mech. Phys. Solids
,
138
, p.
103923
.
32.
Baizhikova
,
Z.
,
Ballarini
,
R.
, and
Le
,
J.-L.
,
2024
, “
Uncovering the Dual Role of Dimensionless Radius in Buckling of Spherical Shells With Random Geometric Imperfections
,”
Proc. Natl. Acad. Sci. USA
,
121
(
16
), p.
e2322415121
.
33.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
You do not currently have access to this content.