This paper considers hyperbolic, one spatial dimension nonlinear wave propagation in a hyperelastic solid, and a discussion of the basic theory is presented. Constitutive relations for compressible rubberlike materials, whose internal energies can be expressed as the sum of a function of specific volume only and a function of temperature only, are discussed. These relations are assumed for the analysis of a class of plane wave problems and similarity solutions are obtained. Thermal effects, including the effect of the jump in entropy across a shock for a problem of uncoupled longitudinal wave propagation, are taken into account, however heat conduction is neglected. Solutions for a piezotropic model, which is a model for which mechanical and thermal effects are uncoupled, are obtained for comparison purposes. An axisymmetric problem is also discussed.

This content is only available via PDF.
You do not currently have access to this content.