Abstract

Heatlines were proposed in 1983 by Kimura and Bejan (1983) as adequate tools for visualization and analysis of convection heat transfer. The masslines, their equivalent to apply to convection mass transfer, were proposed in 1987 by Trevisan and Bejan. These visualization and analysis tools proved to be useful, and their application in the fields of convective heat and/or mass transfer is still increasing. When the heat function and/or the mass function are made dimensionless in an adequate way, their values are closely related with the Nusselt and/or Sherwood numbers. The basics of the method were established in the 1980(s), and some novelties were subsequently added in order to increase the applicability range and facility of use of such visualization tools. Main steps included their use in unsteady problems, their use in polar cylindrical and spherical coordinate systems, development of similarity expressions for the heat function in laminar convective boundary layers, application of the method to turbulent flow problems, unification of the streamline, heatline, and massline methods (involving isotropic or anisotropic media), and the extension and unification of the method to apply to reacting flows. The method is now well established, and the efforts made towards unification resulted in very useful tools for visualization and analysis, which can be easily included in software packages for numerical heat transfer and fluid flow. This review describes the origins and evolution of the heatlines and masslines as visualization and analysis tools, from their first steps to the present.

References

1.
White
,
F. M.
, 1977,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
, p.
62
.
2.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
Jr.
, 1972,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
, Chap. 1.
3.
Kimura
,
S.
, and
Bejan
,
A.
, 1983, “
The Heatline Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
916
919
.
4.
Bejan
,
A.
, 1984,
Convection Heat Transfer
,
Wiley
,
New York
, pp.
21
23
.
5.
Trevisan
,
O. V.
, and
Bejan
,
A.
, 1987, “
Combined Heat and Mass Transfer by Natural Convection in a Vertical Enclosure
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
104
112
.
6.
Bello-Ochende
,
F. L.
, 1987, “
Analysis of Heat Transfer by Free Convection in Tilted Rectangular Cavities Using the Energy-Analogue of the Stream Function
,”
Int. J. Mech. Eng. Education
, 0306-4190
15
(
2
), pp.
91
98
.
7.
Bello-Ochende
,
F. L.
, 1988, “
A Heat Function Formulation for Thermal Convection in a Square Cavity
,”
Int. Commun. Heat Mass Transfer
0735-1933,
15
, pp.
193
202
.
8.
Oh
,
J. Y.
,
Ha
,
M. Y.
, and
Kim
,
K. C.
, 1997, “
Numerical Study of Heat Transfer and Flow of Natural Convection in an Enclosure With Heat-Generating Conducting Body
,”
Numer. Heat Transfer, Part A
1040-7782,
31
, pp.
289
303
.
9.
Costa
,
V. A. F.
, 1997, “
Double-Diffusive Natural Convection in a Square Enclosure With Heat and Mass Diffusive Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
17
), pp.
4061
4071
.
10.
Deng
,
Q.-H.
, and
Tang
,
G.-F.
, 2002, “
Numerical Visualization of Mass and Heat Transport for Conjugate Natural Convection/Heat Conduction by Streamline and Heatline
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
11
), pp.
2375
2385
.
11.
Deng
,
Q.-H.
, and
Tang
,
G.-F.
, 2002, “
Numerical Visualization of Mass and Heat Transport for Mixed Convective Heat Transfer by Streamline and Heatline
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
11
), pp.
2387
2396
.
12.
Deng
,
Q.-H.
,
Tang
,
G.-F.
, and
Li
,
Y.
, 2002, “
A Combined Temperature Scale for Analyzing Natural Convection in Rectangular Enclosures With Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
16
), pp.
3437
3446
.
13.
Costa
,
V. A. F.
, 2004, “
Double-Diffusive Natural Convection in Parallelogrammic Enclosures Filled With Fluid-Saturated Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
12–13
), pp.
2699
2714
.
14.
Morega
,
Al-M.
, 1988, “
Magnetic Field Influence on the Convective Heat Transfer in the Solidification Processes, Part 2
,”
Rev. Roum. Sci. Tech.-Electrotech. et Energ.
, 0035-4066
33
(
2
), pp.
155
166
.
15.
Morega
,
Al-M.
, 1988, “
The Heat Function Approach to the Thermomagnetic Convection of Electroconductive Melts
,”
Rev. Roum. Sci. Tech.-Electrotech. et Energ.
, 0035-4066
33
(
4
), pp.
359
368
.
16.
Aggarwal
,
S. K.
, and
Manhapra
,
A.
, 1989, “
Use of Heatlines for Unsteady Buoyancy-Driven Flow in a Cylindrical Enclosure
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
576
578
.
17.
Aggarwal
,
S. K.
, and
Manhapra
,
A.
, 1989, “
Transient Natural Convection in a Cylindrical Enclosure Nonuniformly Heated at the Top Wall
,”
Numer. Heat Transfer, Part A
1040-7782,
15
, pp.
341
356
.
18.
Littlefield
,
D.
, and
Desai
,
O.
, 1986, “
Buoyant Laminar Convection in a Vertical Cylindrical Annulus
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
814
821
.
19.
Ho
,
C. J.
, and
Lin
,
Y. H.
, 1989, “
Thermal Convection Heart Transfer of Air/Water Layers Enclosed in Horizontal Annuli With Mixed Boundary Conditions
,”
Waerme- Stoffuebertrag.
0042-9929,
24
, pp.
211
224
.
20.
Ho
,
C. J.
,
Lin
,
Y. H.
,
Chen
,
T. C.
, 1989, “
A Numerical Study of Natural Convection in Concentric and Eccentric Horizontal Cylindrical Annuli With Mixed Boundary Conditions
,”
Int. J. Heat Fluid Flow
0142-727X,
10
(
1
), pp.
40
47
.
21.
Ho
,
C. J.
, and
Lin
,
Y. H.
, 1990, “
Natural Convection of Cold Water in a Vertical Annulus With Constant Heat Flux on the Inner Wall
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
117
123
.
22.
Chattopadhyay
,
H.
, and
Dash
,
S. K.
, 1995, “
Numerical Visualization of Convective Heat Transfer From a Sphere-With and Without Radial Mass Efflux
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
5
, pp.
705
716
.
23.
Morega
,
Al. M.
, and
Bejan
,
A.
, 1993, “
Heatline Visualization of Forced Convection Laminar Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
16
), pp.
3957
3966
.
24.
Morega
,
Al. M.
, and
Bejan
,
A.
, 1994, “
Heatline Visualization of Forced Convection in Porous Media
,”
Int. J. Heat Fluid Flow
0142-727X,
15
(
1
), pp.
42
47
.
25.
Costa
,
V. A. F.
, 2000, “
Heatline and Massline Visualization of the Laminar Natural Convection Boundary Layers Near a Vertical Wall
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
20
), pp.
3765
3774
.
26.
Dash
,
S. K.
, 1996, “
Heatline Visualization in Turbulent Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
5
(
4
), pp.
37
46
.
27.
Bejan
,
A.
, 1995,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
28.
Bejan
,
A.
, 2004,
Convection Heat Transfer
, 3rd ed.,
Wiley
,
New York
.
29.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
, 2nd ed.,
Springer
,
New York
.
30.
Costa
,
V. A. F.
, 1999, “
Unification of the Streamline, Heatline and Massline Methods for the Visualization of Two-Dimensional Transport Phenomena
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
1
), pp.
27
33
.
31.
Costa
,
V. A. F.
, 2003, “
Comment on the Paper by Qi-Hong Deng, Guang-Fa Tang, Numerical Visualization of Mass and Heat Transport for Conjugate Natural Convection/Heat Conduction by Streamline and Heatline
,” IJHMT 2002 45 (11) 2373-2385,
Int. J. Heat Mass Transfer
0017-9310,
46
(
1
), pp.
185
187
.
32.
Costa
,
V. A. F.
, 2003, “
Unified Streamline, Heatline and Massline Methods for the Visualization of Two-Dimensional Heat and Mass Transfer in Anisotropic Media
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
8
), pp.
1309
1320
.
33.
Mukhopadhyay
,
A.
,
Qin
,
X.
,
Aggarwal
, and
S. K.
, and
Puri
,
I. K.
, 2002, “
On Extension of Heatline and Massline Concepts to Reacting Flows Through Use of Conserved Scalars
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
791
799
.
34.
Mukhopadhyay
,
A.
,
Qin
,
X.
,
Puri
,
I. K.
, and
Aggarwal
,
S. K.
, 2003, “
Visualization of Scalar Transport in Nonreacting and Reacting Jets Through a Unified Heatline and Massline Formulation
,”
Numer. Heat Transfer, Part A
1040-7782,
44
, pp.
683
704
.
35.
Costa
,
V. A. F.
, 2004, “
Visualization of Two-Dimensional Heat and Mass Transfer Using the Heatlines and Masslines
,” in
Proceedings of the Symposium Bejan’s Constructal Theory of Shape and Structure
,
R. N.
Rosa
,
A. H.
Reis
,
A. F.
Miguel
, eds.,
Évora Geophysics Center
,
Évora, Portugal
, Chap. 6, pp.
147
169
.
36.
Gosman
,
D. A.
,
Pun
,
W. M.
,
Runchal
,
A. K.
,
Spalding
,
D. B.
, and
Wolfsthein
,
C. M.
, 1969,
Heat and Mass Transfer in Recirculating Flows
,
Academic
,
New York
.
37.
Slattery
,
J. C.
, 1999,
Advanced Transport Phenomena
,
Cambridge University Press
,
New York
, p.
50
,
Slattery
,
J. C.
, 1999,
Advanced Transport Phenomena
,
Cambridge University Press
,
New York
, pp.
279
281
.
38.
Davis
,
S. N.
, and
DeWiest
,
R. J. M.
, 1966,
Hydrogeology
,
Wiley
,
New York
, p.
197
.
39.
Bear
,
J.
, 1979,
Hydraulics of Groundwater
,
McGraw-Hill
,
New York
, p.
102
.
You do not currently have access to this content.