Abstract

Enhancement of energy density and safety aspects of Li-ion cells necessitate the usage of “alloying reaction”-based anode materials in lieu of the presently used intercalation-based graphitic carbon. This becomes even more important for the upcoming Na-ion battery system since graphitic carbon does not intercalate sufficient Na-ions to qualify as an anode material. Among the potential “alloying reaction” based anode materials for Li-ion batteries and beyond (viz., Na-ion, K-ion battery systems), Si and Sn have received the major focus; with the inherently ductile nature of Sn (as against the brittleness of Si) and the considerably better stability in the context of electrochemical Na-/K-storage, of late, tilting the balance somewhat in favor of Sn. Nevertheless, similar to Si and most other “alloying reaction”-based anode materials, Sn also undergoes volume expansion/contraction and phase transformations during alkali metal-ion insertion/removal. These cause stress-induced cracking, pulverization, delamination from current collector, accrued polarization and, thus, fairly rapid capacity fade upon electrochemical cycling. Unlike Si, the aforementioned loss in mechanical integrity is believed to be primarily caused by some of the deleterious first-order phase transformations and concomitant formation of brittle intermetallic phases during the alloying/de-alloying process. Against this backdrop, this review article focuses on aspects related to deformation, stress development and associated failure mechanisms of Sn-based electrodes for alkali-metal ion batteries; eventually establishing correlations between phase assemblage/transformation, stress development, mechanical integrity, electrode composition/architecture and electrochemical behavior.

References

1.
Stampatori
,
D.
,
Raimondi
,
P. P.
, and
Noussan
,
M.
,
2020
, “
Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization
,”
Energies
,
13
(
10
), p.
2638
.10.3390/en13102638
2.
Xu
,
C.
,
Dai
,
Q.
,
Gaines
,
L.
,
Hu
,
M.
,
Tukker
,
A.
, and
Steubing
,
B.
,
2020
, “
Future Material Demand for Automotive Lithium-Based Batteries
,”
Commun. Mater.
,
1
(
99
), pp.
1
10
.10.1038/s43246-020-00095-x
3.
Usiskin
,
R.
,
Lu
,
Y.
,
Popovic
,
J.
,
Markas
,
L.
,
Balaya
,
P.
,
Hu
,
Y.-S.
, and
Maier
,
J.
,
2021
, “
Fundamentals, Status and Promise of Sodium-Based Batteries
,”
Nat. Rev. Mater.
, 6, pp. 1020–1035.10.1038/s41578-021-00324-w
4.
Wu
,
F.
,
Zhao
,
C.
,
Chen
,
S.
,
Lu
,
Y.
,
Hou
,
Y.
,
Hu
,
Y. S.
,
Maier
,
J.
, and
Yu
,
Y.
,
2018
, “
Multi-Electron Reaction Materials for Sodium-Based Batteries
,”
Mater. Today
,
21
(
9
), pp.
960
973
.10.1016/j.mattod.2018.03.004
5.
Kubota
,
K.
, and
Komaba
,
S.
,
2015
, “
Review—Practical Issues and Future Perspective for Na-Ion Batteries
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2538
A2550
.10.1149/2.0151514jes
6.
Vaalma
,
C.
,
Buchholz
,
D.
,
Weil
,
M.
, and
Passerini
,
S.
,
2018
, “
A Cost and Resource Analysis of Sodium-Ion Batteries
,”
Nat. Rev. Mater.
,
3
, pp.
1
11
.10.1038/natrevmats.2018.13
7.
Hosaka
,
T.
,
Kubota
,
K.
,
Hameed
,
A. S.
, and
Komaba
,
S.
,
2020
, “
Research Development on K-Ion Batteries
,”
Chem. Rev.
,
120
(
14
), pp.
6358
6466
.10.1021/acs.chemrev.9b00463
8.
Anoopkumar
,
V.
,
John
,
B.
, and
Mercy
,
T. D.
,
2020
, “
Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage?
,”
ACS Appl. Energy Mater.
,
3
(
10
), pp.
9478
9492
.10.1021/acsaem.0c01574
9.
Rajagopalan
,
R.
,
Tang
,
Y.
,
Ji
,
X.
,
Jia
,
C.
, and
Wang
,
H.
,
2020
, “
Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review
,”
Adv. Funct. Mater.
,
30
(
12
), p.
1909486
.10.1002/adfm.201909486
10.
Mukhopadhyay
,
A.
, and
Sheldon
,
B. W.
,
2014
, “
Deformation and Stress in Electrode Materials for Li-Ion Batteries
,”
Prog. Mater. Sci.
,
63
, pp.
58
116
.10.1016/j.pmatsci.2014.02.001
11.
Besenhard
,
J. O.
,
Yang
,
J.
, and
Winter
,
M.
,
1997
, “
Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?
,”
J. Power Sources
,
68
(
1
), pp.
87
90
.10.1016/S0378-7753(96)02547-5
12.
Li
,
J. Y.
,
Xu
,
Q.
,
Li
,
G.
,
Yin
,
Y. X.
,
Wan
,
L. J.
, and
Guo
,
Y. G.
,
2017
, “
Research Progress Regarding Si-Based Anode Materials Towards Practical Application in High Energy Density Li-Ion Batteries
,”
Mater. Chem. Front.
,
1
(
9
), pp.
1691
1708
.10.1039/C6QM00302H
13.
Mou
,
H.
,
Xiao
,
W.
,
Miao
,
C.
,
Li
,
R.
, and
Yu
,
L.
,
2020
, “
Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review
,”
Front. Chem.
,
8
, pp.
1
14
.10.3389/fchem.2020.00141
14.
He
,
J.
,
Wei
,
Y.
,
Zhai
,
T.
, and
Li
,
H.
,
2018
, “
Antimony-Based Materials as Promising Anodes for Rechargeable Lithium-Ion and Sodium-Ion Batteries
,”
Mater. Chem. Front.
,
2
(
3
), pp.
437
455
.10.1039/C7QM00480J
15.
Gabaudan
,
V.
,
Berthelot
,
R.
,
Stievano
,
L.
, and
Monconduit
,
L.
,
2018
, “
Electrochemical Alloying of Lead in Potassium-Ion Batteries
,”
ACS Omega
,
3
(
9
), pp.
12195
12200
.10.1021/acsomega.8b01369
16.
Chang
,
G.
,
Zhao
,
Y.
,
Dong
,
L.
,
Wilkinson
,
D. P.
,
Zhang
,
L.
,
Shao
,
Q.
,
Yan
,
W.
,
Sun
,
X.
, and
Zhang
,
J.
,
2020
, “
A Review of Phosphorus and Phosphides as Anode Materials for Advanced Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
10
), pp.
4996
5048
.10.1039/C9TA12169B
17.
Wang
,
H.
,
Tan
,
H.
,
Luo
,
X.
,
Wang
,
H.
,
Ma
,
T.
,
Lv
,
M.
,
Song
,
X.
,
Jin
,
S.
,
Chang
,
X.
, and
Li
,
X.
,
2020
, “
The Progress on Aluminum-Based Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
48
), pp.
25649
25662
.10.1039/D0TA09762D
18.
Sun
,
J.
,
Li
,
M.
,
Oh
,
J. A. S.
,
Zeng
,
K.
, and
Lu
,
L.
,
2018
, “
Recent Advances of Bismuth Based Anode Materials for Sodium-Ion Batteries
,”
Mater. Technol.
,
33
(
8
), pp.
563
573
.10.1080/10667857.2018.1474005
19.
Pharr
,
M.
,
Choi
,
Y. S.
,
Lee
,
D.
,
Oh
,
K. H.
, and
Vlassak
,
J. J.
,
2016
, “
Measurements of Stress and Fracture in Germanium Electrodes of Lithium-Ion Batteries During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
304
, pp.
164
169
.10.1016/j.jpowsour.2015.11.036
20.
Larcher
,
D.
,
Beattie
,
S.
,
Morcrette
,
M.
,
Edström
,
K.
,
Jumas
,
J. C.
, and
Tarascon
,
J. M.
,
2007
, “
Recent Findings and Prospects in the Field of Pure Metals as Negative Electrodes for Li-Ion Batteries
,”
J. Mater. Chem.
,
17
(
36
), pp.
3759
3772
.10.1039/b705421c
21.
Obrovac
,
M. N.
,
Christensen
,
L.
,
Le
,
D. B.
, and
Dahn
,
J. R.
,
2007
, “
Alloy Design for Lithium-Ion Battery Anodes
,”
J. Electrochem. Soc.
,
154
(
9
), pp.
A849
A855
.10.1149/1.2752985
22.
Stevens
,
D. A.
, and
Dahn
,
J. R.
,
2001
, “
The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
,”
J. Electrochem. Soc.
,
148
(
8
), pp.
A803
A811
.10.1149/1.1379565
23.
Sonia
,
F. J.
,
Aslam
,
M.
, and
Mukhopadhyay
,
A.
,
2020
, “
Understanding the Processing-Structure-Performance Relationship of Graphene and Its Variants as Anode Material for Li-Ion Batteries: A Critical Review
,”
Carbon
,
156
, pp.
130
165
.10.1016/j.carbon.2019.09.026
24.
Sonia
,
F. J.
,
Jangid
,
M. K.
,
Aslam
,
M.
,
Johari
,
P.
, and
Mukhopadhyay
,
A.
,
2019
, “
Enhanced and Faster Potassium Storage in Graphene With Respect to Graphite: A Comparative Study With Lithium Storage
,”
ACS Nano
,
13
(
2
), pp.
2190
2204
.10.1021/acsnano.8b08867
25.
Winter
,
M.
, and
Besenhard
,
J. O.
,
1999
, “
Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites
,”
Electrochim. Acta
,
45
(
1–2
), pp.
31
50
.10.1016/S0013-4686(99)00191-7
26.
Sultana
,
I.
,
Ramireddy
,
T.
,
Rahman
,
M. M.
,
Chen
,
Y.
, and
Glushenkov
,
A. M.
,
2016
, “
Tin-Based Composite Anodes for Potassium-Ion Batteries
,”
Chem. Commun.
,
52
(
59
), pp.
9279
9282
.10.1039/C6CC03649J
27.
Liang
,
J. M.
,
Zhang
,
L. J.
,
XiLi
,
D. G.
, and
Kang
,
J.
,
2020
, “
Research Progress on Tin-Based Anode Materials for Sodium Ion Batteries
,”
Rare Met.
,
39
(
9
), pp.
1005
1018
.10.1007/s12598-020-01453-x
28.
Ying
,
H.
, and
Han
,
W. Q.
,
2017
, “
Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries
,”
Adv. Sci.
,
4
(
11
), p.
1700298
.10.1002/advs.201700298
29.
Jangid
,
M. K.
,
Vemulapally
,
A.
,
Sonia
,
F. J.
,
Aslam
,
M.
, and
Mukhopadhyay
,
A.
,
2017
, “
Feasibility of Reversible Electrochemical Na-Storage and Cyclic Stability of Amorphous Silicon and Silicon-Graphene Film Electrodes
,”
J. Electrochem. Soc.
,
164
(
12
), pp.
A2559
A2565
.10.1149/2.1111712jes
30.
Jangid
,
M. K.
,
Lakhnot
,
A. S.
,
Vemulapally
,
A.
,
Sonia
,
F. J.
,
Sinha
,
S.
,
Dusane
,
R. O.
, and
Mukhopadhyay
,
A.
,
2018
, “
Crystalline Core/Amorphous Shell Structured Silicon Nanowires Offer Size and Structure Dependent Reversible Na-Storage
,”
J. Mater. Chem. A
,
6
(
8
), pp.
3422
3434
.10.1039/C7TA10249F
31.
Loaiza
,
L. C.
,
Monconduit
,
L.
, and
Seznec
,
V.
,
2020
, “
Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective From Structure to Electrochemical Mechanism
,”
Small
,
16
(
5
), p.
1905260
.10.1002/smll.201905260
32.
Arrieta, U., Katcho, N. A., Arcelus, O., and Carrasco, J., 2017, “First-Principles Study of Sodium Intercalation in Crystalline NaxSi24 (0 ≤ x ≤ 4) as Anode Material for Na-Ion Batteries,”
Sci. Rep.
, 7(1), pp.
1
8
.10.1038/s41598-017-05629-x
33.
Gandharapu
,
P.
,
Suman
,
A.
,
Jangid
,
M. K.
,
Velaga
,
S.
,
Poswal
,
H. K.
, and
Mukhopadhyay
,
A.
,
2020
, “
Operando Investigations Toward Changeover of Phase Assemblage and Associated Electrochemical Behavior During Lithiation/Delithiation Cycles of Sn-Based Intermetallic Electrodes
,”
ACS Appl. Energy Mater.
,
3
(
11
), pp.
11249
11259
.10.1021/acsaem.0c02163
34.
Nam
,
D. H.
,
Hong
,
K. S.
,
Lim
,
S. J.
,
Kim
,
T. H.
, and
Kwon
,
H. S.
,
2014
, “
Electrochemical Properties of Electrodeposited Sn Anodes for Na-Ion Batteries
,”
J. Phys. Chem. C
,
118
(
35
), pp.
20086
20093
.10.1021/jp504055j
35.
Ramireddy
,
T.
,
Kali
,
R.
,
Jangid
,
M. K.
,
Srihari
,
V.
,
Poswal
,
H. K.
, and
Mukhopadhyay
,
A.
,
2017
, “
Insights Into Electrochemical Behavior, Phase Evolution and Stability of Sn Upon K-Alloying/de-Alloying Via In Situ Studies
,”
J. Electrochem. Soc.
,
164
(
12
), pp.
A2360
A2367
.10.1149/2.0481712jes
36.
Jangid
,
M. K.
, and
Mukhopadhyay
,
A.
,
2019
, “
Real-Time Monitoring of Stress Development During Electrochemical Cycling of Electrode Materials for Li-Ion Batteries: Overview and Perspectives
,”
J. Mater. Chem. A
,
7
(
41
), pp.
23679
23726
.10.1039/C9TA06474E
37.
Kasavajjula
,
U.
,
Wang
,
C.
, and
Appleby
,
A. J.
,
2007
, “
Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
,”
J. Power Sources
,
163
(
2
), pp.
1003
1039
.10.1016/j.jpowsour.2006.09.084
38.
Soni
,
S. K.
,
Sheldon
,
B. W.
,
Xiao
,
X.
, and
Tokranov
,
A.
,
2011
, “
Thickness Effects on the Lithiation of Amorphous Silicon Thin Films
,”
Scr. Mater.
,
64
(
4
), pp.
307
310
.10.1016/j.scriptamat.2010.10.003
39.
Kumar
,
R.
,
Woo
,
J. H.
,
Xiao
,
X.
, and
Sheldon
,
B. W.
,
2017
, “
Internal Microstructural Changes and Stress Evolution in Silicon Nanoparticle Based Composite Electrodes
,”
J. Electrochem. Soc.
,
164
(
14
), pp.
A3750
A3765
.10.1149/2.0951714jes
40.
Bower
,
A. F.
,
Chason
,
E.
,
Guduru
,
P. R.
, and
Sheldon
,
B. W.
,
2015
, “
A Continuum Model of Deformation, Transport and Irreversible Changes in Atomic Structure in Amorphous Lithium-Silicon Electrodes
,”
Acta Mater.
,
98
, pp.
229
241
.10.1016/j.actamat.2015.07.036
41.
Xin
,
S.
,
Wu
,
Q.
,
Li
,
J.
,
Xiao
,
X.
,
Lott
,
A.
,
Lu
,
W.
,
Sheldon
,
B. W.
, and
Wu
,
J.
,
2014
, “
Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review
,”
Adv. Energy Mater.
,
4
(
1
), p.
1300882
.10.1002/aenm.201300882
42.
Jangid
,
M. K.
,
Sonia
,
F. J.
,
Kali
,
R.
,
Ananthoju
,
B.
, and
Mukhopadhyay
,
A.
,
2017
, “
Insights Into the Effects of Multi-Layered Graphene as Buffer/Interlayer for a-Si During Lithiation/Delithiation
,”
Carbon
,
111
, pp.
602
616
.10.1016/j.carbon.2016.10.032
43.
Kim
,
J.-H.
,
Lee
,
Y.-H.
,
Park
,
J.-H.
,
Lee
,
B.-J.
,
Byeon
,
Y.-W.
, and
Lee
,
J.-C.
,
2021
, “
Ultrafast Na Transport Into Crystalline Sn Via Dislocation-Pipe Diffusion for Rapid Battery Charging
,”
Small
,
2104944
, pp.
1
9
.10.2139/ssrn.3866406
44.
Byeon
,
Y. W.
,
Choi
,
Y. S.
,
Ahn
,
J. P.
, and
Lee
,
J. C.
,
2018
, “
Isotropic Sodiation Behaviors of Ultrafast-Chargeable Tin Crystals
,”
ACS Appl. Mater. Interfaces
,
10
(
48
), pp.
41389
41397
.10.1021/acsami.8b15758
45.
Jangid
,
M. K.
,
Sinha
,
S.
,
Lakhnot
,
A. S.
,
Sonia
,
F. J.
,
Kumar
,
A.
,
Dusane
,
R. O.
, and
Mukhopadhyay
,
A.
,
2019
, “
Effect of the Presence of Si-Oxide/Sub-Oxide Surface Layer(s) on ‘Micron-Sized’ Si Wires Towards the Electrochemical Behavior as Anode Material for Li-Ion Battery
,”
Electrochim. Acta
,
297
, pp.
381
391
.10.1016/j.electacta.2018.11.201
46.
Jangid
,
M. K.
,
Lakra
,
R.
,
Srihari
,
V.
,
Poswal
,
H. K.
,
Aslam
,
M.
,
Pant
,
P.
, and
Mukhopadhyay
,
A.
,
2019
, “
In-Situ Studies Toward the Occurrence of ‘Pseudoelasticity’ in Confined Nanostructured NiTi Films and Its Implications Toward ‘Stress Buffering’ During Electrochemical Li-Alloying/De-Alloying of Si
,”
ACS Appl. Energy Mater.
,
2
(
11
), pp.
8181
8196
.10.1021/acsaem.9b01680
47.
Jangid
,
M. K.
,
Sonia
,
F. J.
,
Aslam
,
M.
, and
Mukhopadhyay
,
A.
,
2020
, “
Lower Limit to Si-Dimension for Retaining Graphenic Carbon Effective as Buffer Interlayer Towards Improving Cyclic Stability of Si-Based Electrodes
,”
Carbon
,
165
, pp.
428
433
.10.1016/j.carbon.2020.04.094
48.
Masias
,
A.
,
Marcicki
,
J.
, and
Paxton
,
W. A.
,
2021
, “
Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications
,”
ACS Energy Lett.
,
6
(
2
), pp.
621
630
.10.1021/acsenergylett.0c02584
49.
Jangid
,
M. K.
, and
Mukhopadhyay
,
A.
,
2021
, “
Silicon Based Anode Materials for Li-Ion Batteries – Importance, Challenges and Strategies
,”
SMC Bull.
,
10
(
3
), pp.
167
178
.https://www.smcindia.org/pdf/SMC-Bulletin-December-2019.pdf
50.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
,”
Adv. Mater.
,
25
(
36
), pp.
4966
4985
.10.1002/adma.201301795
51.
Rhodes
,
K.
,
Dudney
,
N.
,
Lara-Curzio
,
E.
, and
Daniel
,
C.
,
2010
, “
Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission
,”
J. Electrochem. Soc.
,
157
(
12
), p.
A1354
.10.1149/1.3489374
52.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.10.1016/j.jpowsour.2010.02.013
53.
Moon
,
J.
,
Cho
,
K.
, and
Cho
,
M.
,
2012
, “
Ab-Initio Study of Silicon and Tin as a Negative Electrode Materials for Lithium-Ion Batteries
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1191
1197
.10.1007/s12541-012-0158-4
54.
Zhu
,
Y.
,
Qian
,
Z.
,
Song
,
J.
,
Du
,
W.
,
Pan
,
J.
,
Wang
,
D.
, and
Yang
,
J.
,
2021
, “
Voltage-Modulated Structure Stress for Enhanced Electrochemcial Performances: The Case of μ-Sn in Sodium-Ion Batteries
,”
Nano Lett.
,
21
(
8
), pp.
3588
3595
.10.1021/acs.nanolett.1c00489
55.
Arabnejad
,
S.
,
Kojima
,
M.
, and
Yamashita
,
K.
,
2021
, “
Post-Lithium-Ion Batteries: Characterization of Phosphorous and Tin for Potassium-Ion Anodes
,”
J. Mater. Sci.
,
56
(
18
), pp.
10926
10937
.10.1007/s10853-021-06000-2
56.
Hirai
,
K.
,
Ichitsubo
,
T.
,
Uda
,
T.
,
Miyazaki
,
A.
,
Yagi
,
S.
, and
Matsubara
,
E.
,
2008
, “
Effects of Volume Strain Due to Li-Sn Compound Formation on Electrode Potential in Lithium-Ion Batteries
,”
Acta Mater.
,
56
(
7
), pp.
1539
1545
.10.1016/j.actamat.2007.12.002
57.
Chevrier
,
V. L.
, and
Ceder
,
G.
,
2011
, “
Challenges for Na-Ion Negative Electrodes
,”
J. Electrochem. Soc.
,
158
(
9
), pp.
A1011
A1014
.10.1149/1.3607983
58.
Sangster
,
J.
, and
Bale
,
C. W.
,
1998
, “
The Li-Sn (Lithium-Tin) System
,”
J. Phase Equilib.
,
19
(
1
), pp.
70
75
.10.1007/s12385-006-5008-6
59.
Sangster
,
J.
, and
Bale
,
C. W.
,
1998
, “
The Na-Sn (Sodium-Tin) System
,”
J. Phase Equilib.
,
19
(
1
), pp.
76
81
.10.1007/s12385-006-5009-5
60.
Sangster
,
J.
, and
Bale
,
C. W.
,
1998
, “
The K-Sn (Potassium-Tin) System
,”
J. Phase Equilib.
,
19
(
1
), pp.
67
69
.10.1007/s12385-006-5007-7
61.
Pradeep
,
A.
,
Kumar
,
B. S.
,
Kumar
,
A.
,
Srihari
,
V.
,
Poswal
,
H. K.
, and
Mukhopadhyay
,
A.
,
2020
, “
Electrochemically Stable and Very High ‘Rate-Capable’ Bi-Phase Na-Titanate Based Composite Anodes for Na-Ion Batteries
,”
Electrochim. Acta
,
362
, p.
137122
.10.1016/j.electacta.2020.137122
62.
Bhardwaj
,
H. S.
,
Ramireddy
,
T.
,
Pradeep
,
A.
,
Jangid
,
M. K.
,
Srihari
,
V.
,
Poswal
,
H. K.
, and
Mukhopadhyay
,
A.
,
2018
, “
Understanding the Cyclic (in) Stability and the Effects of Presence of a Stable Conducting Network on the Electrochemical Performances of Na2Ti3O7
,”
ChemElectroChem
,
5
(
8
), pp.
1219
1229
.10.1002/celc.201701276
63.
Mukhopadhyay
,
A.
,
Kali
,
R.
,
Badjate
,
S.
,
Tokranov
,
A.
, and
Sheldon
,
B. W.
,
2014
, “
Plastic Deformation Associated With Phase Transformations During Lithiation/Delithiation of Sn
,”
Scr. Mater.
,
92
, pp.
47
50
.10.1016/j.scriptamat.2014.08.011
64.
Kali
,
R.
,
Krishnan
,
Y.
, and
Mukhopadhyay
,
A.
,
2017
, “
Effects of Phase Assemblage and Microstructure-Type for Sn/Intermetallic ‘Composite’ Films on Stress Developments and Cyclic Stability Upon Lithiation/Delithiation
,”
Scr. Mater.
,
130
, pp.
105
109
.10.1016/j.scriptamat.2016.11.023
65.
Xie
,
H.
,
Kang
,
Y.
,
Song
,
H.
,
Guo
,
J.
, and
Zhang
,
Q.
,
2020
, “
In Situ Method for Stress Measurements in Film-Substrate Electrodes During Electrochemical Processes: Key Role of Softening and Stiffening
,”
Acta Mech. Sin.
,
36
(
6
), pp.
1319
1335
.10.1007/s10409-020-00995-8
66.
Liang
,
P.
,
Shao
,
G.
,
Wang
,
H.
, and
Wang
,
C. A.
,
2021
, “
In Situ Electrode Stress Monitoring: An Effective Approach to Study the Electrochemical Behavior of a Lithium Metal Anode
,”
ACS Appl. Energy Mater.
,
4
(
4
), pp.
3993
4001
.10.1021/acsaem.1c00353
67.
Chao
,
S. C.
,
Song
,
Y. F.
,
Wang
,
C. C.
,
Sheu
,
H. S.
,
Wu
,
H. C.
, and
Wu
,
N. L.
,
2011
, “
Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by In Situ Transmission X-Ray Microscopy
,”
J. Phys. Chem. C
,
115
(
44
), pp.
22040
22047
.10.1021/jp206829q
68.
Chao
,
S. C.
,
Yen
,
Y. C.
,
Song
,
Y. F.
,
Chen
,
Y. M.
,
Wu
,
H. C.
, and
Wu
,
N. L.
,
2010
, “
A Study on the Interior Microstructures of Working Sn Particle Electrode of Li-Ion Batteries by In Situ X-Ray Transmission Microscopy
,”
Electrochem. Commun.
,
12
(
2
), pp.
234
237
.10.1016/j.elecom.2009.12.002
69.
Beaulieu
,
L. Y.
,
Beattie
,
S. D.
,
Hatchard
,
T. D.
, and
Dahn
,
J. R.
,
2003
, “
The Electrochemical Reaction of Lithium With Tin Studied by In Situ AFM
,”
J. Electrochem. Soc.
,
150
(
4
), pp.
A419
A424
.10.1149/1.1556595
70.
Han
,
M.
,
Zhu
,
C.
,
Zhao
,
Q.
,
Chen
,
C.
,
Tao
,
Z.
,
Xie
,
W.
,
Cheng
,
F.
, and
Chen
,
J.
,
2017
, “
In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte
,”
ACS Appl. Mater. Interfaces
,
9
(
34
), pp.
28620
28626
.10.1021/acsami.7b08870
71.
Wang
,
J.
,
Eng
,
C.
,
Chen-Wiegart
,
Y. C. K.
, and
Wang
,
J.
,
2015
, “
Probing Three-Dimensional Sodiation-Desodiation Equilibrium in Sodium-Ion Batteries by In Situ Hard X-Ray Nanotomography
,”
Nat. Commun.
,
6
(
1
), pp.
1
9
.10.1038/ncomms8496
72.
Liu
,
D. X.
,
Wang
,
J.
,
Pan
,
K.
,
Qiu
,
J.
,
Canova
,
M.
,
Cao
,
L. R.
, and
Co
,
A. C.
,
2014
, “
In Situ Quantification and Visualization of Lithium Transport With Neutrons
,”
Angew. Chem. Int. Ed.
,
53
(
36
), pp.
9498
9502
.10.1002/anie.201404197
73.
Wang
,
J.
,
Fan
,
F.
,
Liu
,
Y.
,
Jungjohann
,
K. L.
,
Lee
,
S. W.
,
Mao
,
S. X.
,
Liu
,
X.
, and
Zhu
,
T.
,
2014
, “
Structural Evolution and Pulverization of Tin Nanoparticles During Lithiation-Delithiation Cycling
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3019
F3024
.10.1149/2.0041411jes
74.
Idota
,
Y.
,
Kubota
,
T.
,
Matsufuji
,
A.
,
Maekawa
,
Y.
, and
Miyasaka
,
T.
,
1997
, “
Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion – Storage Material
,”
Science
,
276
(
5317
), pp.
1395
1397
.10.1126/science.276.5317.1395
75.
Fan
,
Q.
,
Chupas
,
P. J.
, and
Whittingham
,
M. S.
,
2007
, “
Characterization of Amorphous and Crystalline Tin-Cobalt Anodes
,”
Electrochem. Solid-State Lett.
,
10
(
12
), pp.
A274
278
.10.1149/1.2789418
76.
Liang
,
S.
,
Cheng
,
Y. J.
,
Zhu
,
J.
,
Xia
,
Y.
, and
Müller-Buschbaum
,
P.
,
2020
, “
A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes
,”
Small Methods
,
4
(
8
), p.
2000218
.10.1002/smtd.202000218
77.
Courtney
,
I. A.
,
Tse
,
J. S.
,
Mao
,
O.
,
Hafner
,
J.
, and
Dahn
,
J. R.
,
1998
, “
Ab Initio Calculation of the Lithium-Tin Voltage Profile
,”
Phys. Rev. B Condens. Matter Mater. Phys.
,
58
(
23
), pp.
15583
15588
.10.1103/PhysRevB.58.15583
78.
Wen
,
C. J.
, and
Huggins
,
R. A.
,
1980
, “
Chemical Diffusion in Intermediate Phases in the Lithium-Tin System
,”
J. Solid State Chem.
,
35
(
3
), pp.
376
384
.10.1016/0022-4596(80)90535-6
79.
Wen
,
C. J.
, and
Huggins
,
R. A.
,
1981
, “
Thermodynamic Study of the Lithium-Tin System
,”
J. Electrochem. Soc.
,
128
(
6
), pp.
1181
1187
.10.1149/1.2127590
80.
Harper
,
A. F.
,
Evans
,
M. L.
,
Darby
,
J. P.
,
Karasulu
,
B.
,
Koçer
,
C. P.
,
Nelson
,
J. R.
, and
Morris
,
A. J.
,
2020
, “
Ab Initio Structure Prediction Methods for Battery Materials a Review of Recent Computational Efforts to Predict the Atomic Level Structure and Bonding in Materials for Rechargeable Batteries
,”
Johnson Matthey Technol. Rev.
,
64
(
2
), pp.
103
118
.10.1595/205651320X15742491027978
81.
Chouvin
,
J.
,
Olivier-Fourcade
,
J.
,
Jumas
,
J.
,
Simon
,
B.
, and
Godiveau
,
O.
,
1999
, “
119Sn Mössbauer Study of LixSn Alloys Prepared Electrochemically
,”
Chem. Phys. Lett.
,
308
(
5–6
), pp.
413
420
.10.1016/S0009-2614(99)00632-6
82.
Dunlap
,
R. A.
,
Small
,
D. A.
,
MacNeil
,
D. D.
,
Obrovac
,
M. N.
, and
Dahn
,
J. R.
,
1999
, “
A Mössbauer Effect Investigation of the Li-Sn System
,”
J. Alloys Compd.
,
289
(
1–2
), pp.
135
142
.10.1016/S0925-8388(99)00165-6
83.
Vemulapally
,
A.
,
Kali
,
R.
,
Bhandakkar
,
T. K.
, and
Mukhopadhyay
,
A.
,
2018
, “
Transformation Plasticity Provides Insights Into Concurrent Phase Transformation and Stress Relaxation Observed During Electrochemical Li Alloying of Sn Thin Film
,”
J. Phys. Chem. C
,
122
(
29
), pp.
16561
16573
.10.1021/acs.jpcc.8b04065
84.
Courtney
,
I. A.
, and
Dahn
,
J. R.
,
1997
, “
Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium With Tin Oxide Composites
,”
J. Electrochem. Soc.
,
144
(
6
), pp.
2045
2052
.10.1149/1.1837740
85.
Mansour
,
A. N.
,
Mukerjee
,
S.
,
Yang
,
X. Q.
, and
McBreen
,
J.
,
2000
, “
In Situ X-Ray Absorption and Diffraction Study of the Li Reaction With a Tin Composite Oxide Glass
,”
J. Electrochem. Soc.
,
147
(
3
), pp.
869
873
.10.1149/1.1393284
86.
Rhodes
,
K. J.
,
Meisner
,
R.
,
Kirkham
,
M.
,
Dudney
,
N.
, and
Daniel
,
C.
,
2012
, “
In Situ XRD of Thin Film Tin Electrodes for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A294
A299
.10.1149/2.077203jes
87.
Morachevskii
,
A. G.
,
2018
, “
Sodium–Tin System: Thermodynamic Properties of Alloys and Prospects for Using Tin and Its Alloys and Compounds in Sodium-Ion Batteries (Review)
,”
Russ. J. Appl. Chem.
,
91
(
11
), pp.
1785
1798
.10.1134/S1070427218110083
88.
Wang
,
J.
,
Miao
,
N.
,
Chartrand
,
P.
, and
Jung
,
I. H.
,
2013
, “
Thermodynamic Evaluation and Optimization of the (Na + X) Binary Systems (X = Ag, Ca, in, Sn, Zn) Using Combined Calphad and First-Principles Methods of Calculation
,”
J. Chem. Thermodyn.
,
66
, pp.
22
33
.10.1016/j.jct.2013.06.005
89.
Nam
,
D. H.
,
Kim
,
T. H.
,
Hong
,
K. S.
, and
Kwon
,
H. S.
,
2014
, “
Template-Free Electrochemical Synthesis of Sn Nanofibers as High-Performance Anode Materials for Na-Ion Batteries
,”
ACS Nano
,
8
(
11
), pp.
11824
11835
.10.1021/nn505536t
90.
Ellis
,
L. D.
,
Hatchard
,
T. D.
, and
Obrovac
,
M. N.
,
2012
, “
Reversible Insertion of Sodium in Tin
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
A1801
A1805
.10.1149/2.037211jes
91.
Yamamoto
,
T.
,
Nohira
,
T.
,
Hagiwara
,
R.
,
Fukunaga
,
A.
,
Sakai
,
S.
,
Nitta
,
K.
, and
Inazawa
,
S.
,
2013
, “
Thermodynamic Studies on Sn-Na Alloy in an Intermediate Temperature Ionic Liquid NaFSA-KFSA at 363 K
,”
J. Power Sources
,
237
, pp.
98
103
.10.1016/j.jpowsour.2013.02.076
92.
Baggetto
,
L.
,
Ganesh
,
P.
,
Meisner
,
R. P.
,
Unocic
,
R. R.
,
Jumas
,
J. C.
,
Bridges
,
C. A.
, and
Veith
,
G. M.
,
2013
, “
Characterization of Sodium Ion Electrochemical Reaction With Tin Anodes: Experiment and Theory
,”
J. Power Sources
,
234
, pp.
48
59
.10.1016/j.jpowsour.2013.01.083
93.
Eftekhari
,
A.
,
2004
, “
Potassium Secondary Cell Based on Prussian Blue Cathode
,”
J. Power Sources
,
126
(
1–2
), pp.
221
228
.10.1016/j.jpowsour.2003.08.007
94.
Gabaudan
,
V.
,
Berthelot
,
R.
,
Sougrati
,
M. T.
,
Lippens
,
P. E.
,
Monconduit
,
L.
, and
Stievano
,
L.
,
2019
, “
SnSb: Vs. Sn: Improving the Performance of Sn-Based Anodes for K-Ion Batteries by Synergetic Alloying With Sb
,”
J. Mater. Chem. A
,
7
(
25
), pp.
15262
15270
.10.1039/C9TA03760H
95.
Zhang
,
W.
,
Mao
,
J.
,
Li
,
S.
,
Chen
,
Z.
, and
Guo
,
Z.
,
2017
, “
Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode
,”
J. Am. Chem. Soc.
,
139
(
9
), pp.
3316
3319
.10.1021/jacs.6b12185
96.
Wang
,
J. W.
,
Liu
,
X. H.
,
Mao
,
S. X.
, and
Huang
,
J. Y.
,
2012
, “
Microstructural Evolution of Tin Nanoparticles During In Situ Sodium Insertion and Extraction
,”
Nano Lett.
,
12
(
11
), pp.
5897
5902
.10.1021/nl303305c
97.
Li
,
K.
,
Xie
,
H.
,
Liu
,
J.
,
Ma
,
Z.
,
Zhou
,
Y.
, and
Xue
,
D.
,
2013
, “
From Chemistry to Mechanics: Bulk Modulus Evolution of Li-Si and Li-Sn Alloys Via the Metallic Electronegativity Scale
,”
Phys. Chem. Chem. Phys.
,
15
(
40
), pp.
17658
17663
.10.1039/c3cp52997e
98.
Pugh
,
S. F.
,
1954
, “
XCII. Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
45
(
367
), pp.
823
843
.10.1080/14786440808520496
99.
Stournara
,
M. E.
,
Guduru
,
P. R.
, and
Shenoy
,
V. B.
,
2012
, “
Elastic Behavior of Crystalline Li-Sn Phases With Increasing Li Concentration
,”
J. Power Sources
,
208
, pp.
165
169
.10.1016/j.jpowsour.2012.02.022
100.
Mortazavi
,
M.
,
Deng
,
J.
,
Shenoy
,
V. B.
, and
Medhekar
,
N. V.
,
2013
, “
Elastic Softening of Alloy Negative Electrodes for Na-Ion Batteries
,”
J. Power Sources
,
225
, pp.
207
214
.10.1016/j.jpowsour.2012.10.044
101.
Pettifor
,
D. G.
,
1992
, “
Theoretical Predictions of Structure and Related Properties of Intermetallics
,”
Mater. Sci. Technol.
,
8
(
4
), pp.
345
349
.10.1179/mst.1992.8.4.345
102.
Rice
,
J. R.
, and
Thomson
,
R.
,
1974
, “
Ductile Versus Brittle Behaviour of Crystals
,”
Philos. Mag.
,
29
(
1
), pp.
73
97
.10.1080/14786437408213555
103.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.10.1016/S0022-5096(05)80012-2
104.
Zhou
,
S. J.
,
Carlsson
,
A. E.
, and
Thomson
,
R.
,
1994
, “
Crack Blunting Effects on Dislocation Emission From Cracks
,”
Phys. Rev. Lett.
,
72
(
6
), pp.
852
855
.10.1103/PhysRevLett.72.852
105.
Thompson
,
R. P.
, and
Clegg
,
W. J.
,
2018
, “
Predicting Whether a Material is Ductile or Brittle
,”
Curr. Opin. Solid State Mater. Sci.
,
22
(
3
), pp.
100
108
.10.1016/j.cossms.2018.04.001
106.
Li
,
H.
,
Yamaguchi
,
T.
,
Matsumoto
,
S.
,
Hoshikawa
,
H.
,
Kumagai
,
T.
,
Okamoto
,
N. L.
, and
Ichitsubo
,
T.
,
2020
, “
Circumventing Huge Volume Strain in Alloy Anodes of Lithium Batteries
,”
Nat. Commun.
,
11
(
1
), pp.
1
8
.10.1038/s41467-020-15452-0
107.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), pp.
1
7
.10.1063/1.3492617
108.
Gasior
,
W.
,
Moser
,
Z.
, and
Zakulski
,
W.
,
1996
, “
Thermodynamic Studies and the Phase Diagram of the Li-Sn System
,”
J. Non. Cryst. Solids
,
205-207
(
1
), pp.
379
382
.10.1016/S0022-3093(96)00446-2
109.
Wang
,
C.
,
John Appleby
,
A.
, and
Little
,
F. E.
,
2001
, “
Electrochemical Study on Nano-Sn, Li4.4Sn and AlSi0.1 Powders Used as Secondary Lithium Battery Anodes
,”
J. Power Sources
,
93
(
1–2
), pp.
174
185
.10.1016/S0378-7753(00)00576-0
110.
Leblond
,
J. B.
,
Devaux
,
J.
, and
Devaux
,
J. C.
,
1989
, “
Mathematical Modelling of Transformation Plasticity in Steels I: Case of Ideal-Plastic Phases
,”
Int. J. Plast.
,
5
(
6
), pp.
551
572
.10.1016/0749-6419(89)90001-6
111.
Fischer
,
F. D.
,
Reisner
,
G.
,
Werner
,
E.
,
Tanaka
,
K.
,
Cailletaud
,
G.
, and
Antretter
,
T.
,
2000
, “
New View on Transformation Induced Plasticity (TRIP)
,”
Int. J. Plast.
,
16
(
7–8
), pp.
723
748
.10.1016/S0749-6419(99)00078-9
112.
Ichitsubo
,
T.
,
Yukitani
,
S.
,
Hirai
,
K.
,
Yagi
,
S.
,
Uda
,
T.
, and
Matsubara
,
E.
,
2011
, “
Mechanical-Energy Influences to Electrochemical Phenomena in Lithium-Ion Batteries
,”
J. Mater. Chem.
,
21
(
8
), pp.
2701
2708
.10.1039/c0jm02893b
113.
Aifantis
,
K. E.
,
Hackney
,
S. A.
, and
Dempsey
,
J. P. J.
,
2007
, “
Design Criteria for Nanostructured Li-Ion Batteries
,”
J. Power Sources
,
165
(
2
), pp.
874
879
.10.1016/j.jpowsour.2006.10.070
114.
Zhang
,
P.
,
Ma
,
Z.
,
Jiang
,
W.
,
Wang
,
Y.
,
Pan
,
Y.
, and
Lu
,
C.
,
2016
, “
Mechanical Properties of Li-Sn Alloys for Li-Ion Battery Anodes: A First-Principles Perspective
,”
AIP Adv.
,
6
(
1
), p.
015107
.10.1063/1.4940131
115.
Gao
,
X.
,
Ma
,
Z.
,
Jiang
,
W.
,
Zhang
,
P.
,
Wang
,
Y.
,
Pan
,
Y.
, and
Lu
,
C.
,
2016
, “
Stress-Strain Relationships of LixSn Alloys for Lithium Ion Batteries
,”
J. Power Sources
,
311
, pp.
21
28
.10.1016/j.jpowsour.2016.02.024
116.
Mukaibo
,
H.
,
Momma
,
T.
,
Shacham-Diamand
,
Y.
,
Osaka
,
T.
, and
Kodaira
,
M.
,
2007
, “
In Situ Stress Transition Observations of Electrodeposited Sn-Based Anode Materials for Lithium-Ion Secondary Batteries
,”
Electrochem. Solid-State Lett.
,
10
(
3
), pp.
A70
A73
.10.1149/1.2426410
117.
Chen
,
J.
,
Bull
,
S. J.
,
Roy
,
S.
,
Mukaibo
,
H.
,
Nara
,
H.
,
Momma
,
T.
,
Osaka
,
T.
, and
Shacham-Diamand
,
Y.
,
2008
, “
Mechanical Analysis and In Situ Structural and Morphological Evaluation of Ni-Sn Alloy Anodes for Li Ion Batteries
,”
J. Phys. D. Appl. Phys.
,
41
(
2
), pp.
1
13
.10.1088/0022-3727/41/2/025302
118.
Mishra
,
D.
,
Jangid
,
M. K.
,
Chhangani
,
S.
,
Gandharapu
,
P.
,
Prasad
,
M. J. N. V.
, and
Mukhopadhyay
,
A.
,
2020
, “
Lattice Distortion of Current Collector Upon Supporting Dimensional Changes of Electrode-Active Materials in Alkali-Metal-Ion Batteries
,”
Energy Fuels
,
34
(
6
), pp.
7763
7769
.10.1021/acs.energyfuels.0c01516
119.
Mukhopadhyay
,
A.
,
Tokranov
,
A.
,
Xiao
,
X.
, and
Sheldon
,
B. W.
,
2012
, “
Stress Development Due to Surface Processes in Graphite Electrodes for Li-Ion Batteries: A First Report
,”
Electrochim. Acta
,
66
, pp.
28
37
.10.1016/j.electacta.2012.01.058
120.
Tokranov
,
A.
,
Sheldon
,
B. W.
,
Lu
,
P.
,
Xiao
,
X.
, and
Mukhopadhyay
,
A.
,
2014
, “
The Origin of Stress in the Solid Electrolyte Interphase on Carbon Electrodes for Li Ion Batteries
,”
J. Electrochem. Soc.
,
161
(
1
), pp.
A58
A65
.10.1149/2.009401jes
121.
Sonia
,
F. J.
,
Ananthoju
,
B.
,
Jangid
,
M. K.
,
Kali
,
R.
,
Aslam
,
M.
, and
Mukhopadhyay
,
A.
,
2015
, “
Insight Into the Mechanical Integrity of Few-Layers Graphene Upon Lithiation/Delithiation Via In Situ Monitoring of Stress Development
,”
Carbon
,
88
, pp.
206
214
.10.1016/j.carbon.2015.02.078
122.
Chen
,
C.-H.
,
Chason
,
E.
, and
Guduru
,
P. R.
,
2017
, “
Measurements of the Phase and Stress Evolution During Initial Lithiation of Sn Electrodes
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A574
A579
.10.1149/2.0381704jes
123.
Noh
,
K. W.
, and
Dillon
,
S. J.
,
2013
, “
Morphological Changes in and Around Sn Electrodes During Li Ion Cycling Characterized by In Situ Environmental TEM
,”
Scr. Mater.
,
69
(
9
), pp.
658
661
.10.1016/j.scriptamat.2013.07.028
124.
Tavassol
,
H.
,
Cason
,
M. W.
,
Nuzzo
,
R. G.
, and
Gewirth
,
A. A.
,
2015
, “
Influence of Oxides on the Stress Evolution and Reversibility During SnOx Conversion and Li-Sn Alloying Reactions
,”
Adv. Energy Mater.
,
5
(
1
), p.
1400317
.10.1002/aenm.201400317
125.
Li
,
T.
,
Gulzar
,
U.
,
Bai
,
X.
,
Lenocini
,
M.
,
Prato
,
M.
,
Aifantis
,
K. E.
,
Capiglia
,
C.
, and
Proietti Zaccaria
,
R.
,
2019
, “
Insight on the Failure Mechanism of Sn Electrodes for Sodium-Ion Batteries: Evidence of Pore Formation During Sodiation and Crack Formation During Desodiation
,”
ACS Appl. Energy Mater.
,
2
(
1
), pp.
860
866
.10.1021/acsaem.8b01934
126.
Li
,
T.
,
Gulzar
,
U.
,
Proietti Zaccaria
,
R.
,
Capiglia
,
C.
,
Hackney
,
S. A.
, and
Aifantis
,
K. E.
,
2019
, “
Damage Formation in Sn Film Anodes of Na-Ion Batteries
,”
J. Phys. Chem. C
,
123
(
24
), pp.
15244
15250
.10.1021/acs.jpcc.9b02004
127.
Guo
,
J.
, and
Jia
,
Z.
,
2021
, “
Stress Evolution During the Two-Step Charging of High-Capacity Electrode Materials
,”
J. Power Sources
,
486
, p.
229371
.10.1016/j.jpowsour.2020.229371
128.
Gonzalez
,
J.
,
Sun
,
K.
,
Huang
,
M.
,
Lambros
,
J.
,
Dillon
,
S.
, and
Chasiotis
,
I.
,
2014
, “
Three Dimensional Studies of Particle Failure in Silicon Based Composite Electrodes for Lithium Ion Batteries
,”
J. Power Sources
,
269
, pp.
334
343
.10.1016/j.jpowsour.2014.07.001
129.
Wang
,
B.
,
Luo
,
B.
,
Li
,
X.
, and
Zhi
,
L.
,
2012
, “
The Dimensionality of Sn Anodes in Li-Ion Batteries
,”
Mater. Today
,
15
(
12
), pp.
544
552
.10.1016/S1369-7021(13)70012-9
130.
Wang
,
X. L.
,
Feygenson
,
M.
,
Aronson
,
M. C.
, and
Han
,
W. Q.
,
2010
, “
Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity
,”
J. Phys. Chem. C
,
114
(
35
), pp.
14697
14703
.10.1021/jp101852y
131.
Li
,
N.
,
Martin
,
C. R.
, and
Scrosati
,
B.
,
2001
, “
Nanomaterial-Based Li-Ion Battery Electrodes
,”
J. Power Sources
,
97–98
, pp.
240
243
.10.1016/S0378-7753(01)00760-1
132.
Xu
,
L.
,
Kim
,
C.
,
Shukla
,
A. K.
,
Dong
,
A.
,
Mattox
,
T. M.
,
Milliron
,
D. J.
, and
Cabana
,
J.
,
2013
, “
Monodisperse Sn Nanocrystals as a Platform for the Study of Mechanical Damage During Electrochemical Reactions With Li
,”
Nano Lett.
,
13
(
4
), pp.
1800
1805
.10.1021/nl400418c
133.
Huang
,
J. Y.
,
Zhong
,
L.
,
Wang
,
C. M.
,
Sullivan
,
J. P.
,
Xu
,
W.
,
Zhang
,
L. Q.
,
Mao
,
S. X.
,
Hudak
,
N. S.
,
Liu
,
X. H.
,
Subramanian
,
A.
,
Fan
,
H.
,
Qi
,
L.
,
Kushima
,
A.
, and
Li
,
J.
,
2010
, “
In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
,”
Science
,
330
(
6010
), pp.
1515
1520
.10.1126/science.1195628
134.
Palumbo, S., Silvestri, L., Ansaldo, A., Brescia, R., Bonaccorso, F., and Pellegrini, V., 2019, “Silicon Few-Layer Graphene Nanocomposite as High-Capacity and High-Rate Anode in Lithium-Ion Batteries,”
ACS Appl. Energy Mater.
, 2(3), pp.
1793
1802
.10.1021/acsaem.8b01927
135.
Zheng
,
X.
,
Lv
,
W.
,
He
,
Y. B.
,
Zhang
,
C.
,
Wei
,
W.
,
Tao
,
Y.
,
Li
,
B.
, and
Yang
,
Q. H.
,
2014
, “
3D Hollow Sn@carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries
,”
J. Nanomater.
,
2014
, pp.
1
25
.10.1155/2014/974285
136.
Luo
,
B.
,
Qiu
,
T.
,
Ye
,
D.
,
Wang
,
L.
, and
Zhi
,
L.
,
2016
, “
Tin Nanoparticles Encapsulated in Graphene Backboned Carbonaceous Foams as High-Performance Anodes for Lithium-Ion and Sodium-Ion Storage
,”
Nano Energy
,
22
, pp.
232
240
.10.1016/j.nanoen.2016.02.024
137.
Wang
,
H.
,
Matios
,
E.
,
Wang
,
C.
,
Luo
,
J.
,
Lu
,
X.
,
Hu
,
X.
,
Zhang
,
Y.
, and
Li
,
W.
,
2019
, “
Tin Nanoparticles Embedded in a Carbon Buffer Layer as Preferential Nucleation Sites for Stable Sodium Metal Anodes
,”
J. Mater. Chem. A
,
7
(
41
), pp.
23747
23755
.10.1039/C9TA05176G
138.
Mauger
,
A.
,
Xie
,
H.
, and
Julien
,
C. M.
,
2016
, “
Composite Anodes for Lithium-Ion Batteries: Status and Trends
,”
AIMS Mater. Sci.
,
3
(
3
), pp.
1054
1106
.10.3934/matersci.2016.3.1054
139.
Liu
,
Y.
,
Zhang
,
N.
,
Jiao
,
L.
, and
Chen
,
J.
,
2015
, “
Tin Nanodots Encapsulated in Porous Nitrogen-Doped Carbon Nanofibers as a Free-Standing Anode for Advanced Sodium-Ion Batteries
,”
Adv. Mater.
,
27
(
42
), pp.
6702
6707
.10.1002/adma.201503015
140.
Palaniselvam
,
T.
,
Goktas
,
M.
,
Anothumakkool
,
B.
,
Sun
,
Y. N.
,
Schmuch
,
R.
,
Zhao
,
L.
,
Han
,
B. H.
,
Winter
,
M.
, and
Adelhelm
,
P.
,
2019
, “
Sodium Storage and Electrode Dynamics of Tin–Carbon Composite Electrodes From Bulk Precursors for Sodium-Ion Batteries
,”
Adv. Funct. Mater.
,
29
(
18
), p.
1900790
.10.1002/adfm.201900790
141.
Hu
,
R.
,
Zhu
,
M.
,
Wang
,
H.
,
Liu
,
J.
,
Ouyang
,
L.
, and
Zou
,
J.
,
2012
, “
Sn Buffered by Shape Memory Effect of NiTi Alloys as High-Performance Anodes for Lithium Ion Batteries
,”
Acta Mater.
,
60
(
12
), pp.
4695
4703
.10.1016/j.actamat.2012.05.015
142.
Hu
,
R.
,
Ouyang
,
Y.
,
Chen
,
D.
,
Wang
,
H.
,
Chen
,
Y.
,
Zhu
,
M.
, and
Liu
,
M.
,
2016
, “
Inhibiting Sn Coarsening to Enhance the Reversibility of Conversion Reaction in Lithiated SnO2 Anodes by Application of Super-Elastic NiTi Films
,”
Acta Mater.
,
109
, pp.
248
258
.10.1016/j.actamat.2016.02.060
143.
Zhu
,
H.
,
Jia
,
Z.
,
Chen
,
Y.
,
Weadock
,
N.
,
Wan
,
J.
,
Vaaland
,
O.
,
Han
,
X.
,
Li
,
T.
, and
Hu
,
L.
,
2013
, “
Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
,”
Nano Lett.
,
13
(
7
), pp.
3093
3100
.10.1021/nl400998t
144.
Jia
,
Z.
, and
Li
,
T.
,
2016
, “
Failure Mechanics of a Wrinkling Thin Film Anode on a Substrate Under Cyclic Charging and Discharging
,”
Extrem. Mech. Lett.
,
8
, pp.
273
282
.10.1016/j.eml.2016.03.006
145.
Farbod
,
B.
,
Cui
,
K.
,
Kalisvaart
,
W. P.
,
Kupsta
,
M.
,
Zahiri
,
B.
,
Kohandehghan
,
A.
,
Lotfabad
,
E. M.
,
Li
,
Z.
,
Luber
,
E. J.
, and
Mitlin
,
D.
,
2014
, “
Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys
,”
ACS Nano
,
8
(
5
), pp.
4415
4429
.10.1021/nn4063598
146.
Mukaibo
,
H.
,
Sumi
,
T.
,
Yokoshima
,
T.
,
Momma
,
T.
, and
Osaka
,
T.
,
2003
, “
Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries
,”
Electrochem. Solid-State Lett.
,
6
(
10
), pp.
A218
A220
.10.1149/1.1602331
147.
Mukaibo
,
H.
,
Momma
,
T.
,
Mohamedi
,
M.
, and
Osaka
,
T.
,
2005
, “
Structural and Morphological Modifications of a Nanosized 62 Atom Percent Sn-Ni Thin Film Anode During Reaction With Lithium
,”
J. Electrochem. Soc.
,
152
(
3
), pp.
A560
A565
.10.1149/1.1856913
148.
Yi
,
Z.
,
Wang
,
Z.
,
Cheng
,
Y.
, and
Wang
,
L.
,
2018
, “
Sn-Based Intermetallic Compounds for Li-Ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances
,”
Energy Environ. Mater.
,
1
(
3
), pp.
132
147
.10.1002/eem2.12016
149.
Larcher
,
D.
,
Beaulieu
,
L. Y.
,
MacNeil
,
D. D.
, and
Dahn
,
J. R.
,
2000
, “
In Situ X-Ray Study of the Electrochemical Reaction of Li With η′-Cu6Sn5
,”
J. Electrochem. Soc.
,
147
(
5
), pp.
1658
1662
.10.1149/1.1393413
150.
Chen
,
J.
,
Yang
,
L.
,
Fang
,
S.
,
Hirano
,
S. I.
, and
Tachibana
,
K.
,
2012
, “
Three-Dimensional Core-Shell Cu@Cu6Sn5 Nanowires as the Anode Material for Lithium Ion Batteries
,”
J. Power Sources
,
199
, pp.
341
345
.10.1016/j.jpowsour.2011.10.043
151.
Xia
,
Y.
,
Sakai
,
T.
,
Fujieda
,
T.
,
Wada
,
M.
, and
Yoshinaga
,
H.
,
2001
, “
Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
148
(
5
), pp.
A471
A481
.10.1149/1.1362542
152.
Sharma
,
S.
,
Fransson
,
L.
,
Sjöstedt
,
E.
,
Nordström
,
L.
,
Johansson
,
B.
, and
Edström
,
K.
,
2003
, “
A Theoretical and Experimental Study of the Lithiation of η′-Cu6Sn5 in a Lithium-Ion Battery
,”
J. Electrochem. Soc.
,
150
(
3
), pp.
A330
A334
.10.1149/1.1544634
153.
Tamura
,
N.
,
Ohshita
,
R.
,
Fujimoto
,
M.
,
Fujitani
,
S.
,
Kamino
,
M.
, and
Yonezu
,
I.
,
2002
, “
Study on the Anode Behavior of Sn and Sn-Cu Alloy Thin-Film Electrodes
,”
J. Power Sources
,
107
(
1
), pp.
48
55
.10.1016/S0378-7753(01)00979-X
154.
Zhang
,
R.
,
Wang
,
Z.
,
Ma
,
W.
,
Yu
,
W.
,
Lu
,
S.
, and
Liu
,
X.
,
2017
, “
Improved Sodium-Ion Storage Properties by Fabricating Nanoporous CuSn Alloy Architecture
,”
RSC Adv.
,
7
(
47
), pp.
29458
29463
.10.1039/C7RA03718J
155.
Thorne
,
J. S.
,
Dunlap
,
R. A.
, and
Obrovac
,
M. N.
,
2013
, “
(Cu6Sn5)1-xCx Active/Inactive Nanocomposite Negative Electrodes for Na-Ion Batteries
,”
Electrochim. Acta
,
112
, pp.
133
137
.10.1016/j.electacta.2013.08.120
156.
Kim
,
I. T.
,
Allcorn
,
E.
, and
Manthiram
,
A.
,
2015
, “
Cu6Sn5-TiC-C Nanocomposite Anodes for High-Performance Sodium-Ion Batteries
,”
J. Power Sources
,
281
, pp.
11
17
.10.1016/j.jpowsour.2015.01.163
157.
Xie
,
H.
,
Tan
,
X.
,
Luber
,
E. J.
,
Olsen
,
B. C.
,
Kalisvaart
,
W. P.
,
Jungjohann
,
K. L.
,
Mitlin
,
D.
, and
Buriak
,
J. M.
,
2018
, “
β-SnSb for Sodium Ion Battery Anodes: Phase Transformations Responsible for Enhanced Cycling Stability Revealed by In Situ TEM
,”
ACS Energy Lett.
,
3
(
7
), pp.
1670
1676
.10.1021/acsenergylett.8b00762
158.
Li
,
H.
,
Shi
,
L.
,
Lu
,
W.
,
Huang
,
X.
, and
Chen
,
L.
,
2001
, “
Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
148
(
8
), pp.
A915
A922
.10.1149/1.1383070
159.
Wu
,
J.
,
Zhu
,
Z.
,
Zhang
,
H.
,
Fu
,
H.
,
Li
,
H.
,
Wang
,
A.
, and
Zhang
,
H.
,
2016
, “
A Novel Si/Sn Composite With Entangled Ribbon Structure as Anode Materials for Lithium Ion Battery
,”
Sci. Rep.
,
6
, pp.
1
7
.10.1038/srep29356
160.
Buriak
,
J. M.
,
Sayed
,
S. Y.
,
Peter Kalisvaart
,
W.
,
Luber
,
E. J.
, and
Olsen
,
B. C.
,
2020
, “
Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying With Silicon
,”
ACS Appl. Energy Mater.
,
3
(
10
), pp.
9950
9962
.10.1021/acsaem.0c01641
161.
Kebede
,
M. A.
,
2020
, “
Tin Oxide–Based Anodes for Both Lithium-Ion and Sodium-Ion Batteries
,”
Curr. Opin. Electrochem.
,
21
(
1
), pp.
182
187
.10.1016/j.coelec.2020.02.003
162.
Shimizu
,
M.
,
Yamakami
,
T.
,
Koya
,
T.
,
Arai
,
S.
, and
Yatsuzuka
,
R.
,
2018
, “
Tin Oxides as a Negative Electrode Material for Potassium-Ion Batteries
,”
ACS Appl. Energy Mater.
,
1
(
12
), pp.
6865
6870
.10.1021/acsaem.8b01209
You do not currently have access to this content.