Abstract

The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interactions of electrode/electrolyte interfaces result in nonuniform stress fields and structurally different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo–mechanical coupling and failure mechanisms at solid–liquid interfaces and solid–solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid–solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Finally, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries.

References

1.
Li
,
M.
,
Lu
,
J.
,
Chen
,
Z.
, and
Amine
,
K.
,
2018
, “
30 Years of Lithium‐Ion Batteries
,”
Adv. Mater.
,
30
(
33
), p.
1800561
.10.1002/adma.201800561
2.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.10.1039/c1ee01598b
3.
Wu
,
F.
,
Maier
,
J.
, and
Yu
,
Y.
,
2020
, “
Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
49
(
5
), pp.
1569
1614
.10.1039/C7CS00863E
4.
Cheng
,
X.-B.
,
Zhang
,
R.
,
Zhao
,
C.-Z.
, and
Zhang
,
Q.
,
2017
, “
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
,”
Chem. Rev.
,
117
(
15
), pp.
10403
10473
.10.1021/acs.chemrev.7b00115
5.
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities
,”
Nat. Rev. Mater.
,
1
(
4
), pp.
1
16
.10.1038/natrevmats.2016.13
6.
Xu
,
W.
,
Wang
,
J.
,
Ding
,
F.
,
Chen
,
X.
,
Nasybulin
,
E.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2014
, “
Lithium Metal Anodes for Rechargeable Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
513
537
.10.1039/C3EE40795K
7.
Liu
,
J.
,
Bao
,
Z.
,
Cui
,
Y.
,
Dufek
,
E. J.
,
Goodenough
,
J. B.
,
Khalifah
,
P.
,
Li
,
Q.
,
Liaw
,
B. Y.
,
Liu
,
P.
, and
Manthiram
,
A.
,
2019
, “
Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries
,”
Nat. Energy
,
4
(
3
), pp.
180
186
.10.1038/s41560-019-0338-x
8.
Bieker
,
G.
,
Winter
,
M.
, and
Bieker
,
P.
,
2015
, “
Electrochemical in Situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode
,”
Phys. Chem. Chem. Phys.
,
17
(
14
), pp.
8670
8679
.10.1039/C4CP05865H
9.
Lin
,
D.
,
Liu
,
Y.
, and
Cui
,
Y.
,
2017
, “
Reviving the Lithium Metal Anode for High-Energy Batteries
,”
Nat. Nanotechnol.
,
12
(
3
), pp.
194
206
.10.1038/nnano.2017.16
10.
Chen
,
K.-H.
,
Wood
,
K. N.
,
Kazyak
,
E.
,
LePage
,
W. S.
,
Davis
,
A. L.
,
Sanchez
,
A. J.
, and
Dasgupta
,
N. P.
,
2017
, “
Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes
,”
J. Mater. Chem. A
,
5
(
23
), pp.
11671
11681
.10.1039/C7TA00371D
11.
Wood
,
K. N.
,
Kazyak
,
E.
,
Chadwick
,
A. F.
,
Chen
,
K.-H.
,
Zhang
,
J.-G.
,
Thornton
,
K.
, and
Dasgupta
,
N. P.
,
2016
, “
Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes Through Operando Video Microscopy
,”
ACS Central Sci.
,
2
(
11
), pp.
790
801
.10.1021/acscentsci.6b00260
12.
Randau
,
S.
,
Weber
,
D. A.
,
Kötz
,
O.
,
Koerver
,
R.
,
Braun
,
P.
,
Weber
,
A.
,
Ivers-Tiffée
,
E.
,
Adermann
,
T.
,
Kulisch
,
J.
, and
Zeier
,
W. G.
,
2020
, “
Benchmarking the Performance of All-Solid-State Lithium Batteries
,”
Nat. Energy
,
5
(
3
), pp.
259
270
.10.1038/s41560-020-0565-1
13.
Hatzell
,
K. B.
,
Chen
,
X. C.
,
Cobb
,
C. L.
,
Dasgupta
,
N. P.
,
Dixit
,
M. B.
,
Marbella
,
L. E.
,
McDowell
,
M. T.
,
Mukherjee
,
P. P.
,
Verma
,
A.
, and
Viswanathan
,
V.
,
2020
, “
Challenges in Lithium Metal Anodes for Solid-State Batteries
,”
ACS Energy Lett.
,
5
(
3
), pp.
922
934
.10.1021/acsenergylett.9b02668
14.
Krauskopf
,
T.
,
Richter
,
F. H.
,
Zeier
,
W. G.
, and
Janek
,
J. R.
,
2020
, “
Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries
,”
Chem. Revi.
,
120
(
15
), pp.
7745
7794
.10.1021/acs.chemrev.0c00431
15.
Vishnugopi
,
B. S.
,
Kazyak
,
E.
,
Lewis
,
J. A.
,
Nanda
,
J.
,
McDowell
,
M. T.
,
Dasgupta
,
N. P.
, and
Mukherjee
,
P. P.
,
2021
, “
Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries
,”
ACS Energy Lett.
,
6
(
10
), pp.
3734
3749
.10.1021/acsenergylett.1c01352
16.
Lewis
,
J. A.
,
Tippens
,
J.
,
Cortes
,
F. J. Q.
, and
McDowell
,
M. T.
,
2019
, “
Chemo-Mechanical Challenges in Solid-State Batteries
,”
Trends Chem.
,
1
(
9
), pp.
845
857
.10.1016/j.trechm.2019.06.013
17.
Ren
,
Y.
, and
Hatzell
,
K. B.
,
2021
, “
Elasticity-Oriented Design of Solid-State Batteries: Challenges and Perspectives
,”
J. Mater. Chem. A
,
9
(
24
), pp.
13804
13821
.10.1039/D1TA01545A
18.
Naik
,
K. G.
,
Vishnugopi
,
B. S.
, and
Mukherjee
,
P. P.
,
2022
, “
Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?
,”
ACS Appl. Mater. Interfaces
,
14
(
26
), pp.
29754
29765
.10.1021/acsami.2c04962
19.
Mücke
,
R.
,
Finsterbusch
,
M.
,
Kaghazchi
,
P.
,
Fattakhova-Rohlfing
,
D.
, and
Guillon
,
O.
,
2021
, “
Modelling Electro-Chemical Induced Stresses in All-Solid-State Batteries: Anisotropy Effects in Cathodes and Cell Design Optimisation
,”
J. Power Sources
,
489
, p.
229430
.10.1016/j.jpowsour.2020.229430
20.
Ren
,
Y.
,
Shen
,
Y.
,
Lin
,
Y.
, and
Nan
,
C.-W.
,
2015
, “
Direct Observation of Lithium Dendrites Inside Garnet-Type Lithium-Ion Solid Electrolyte
,”
Electrochem. Commun.
,
57
, pp.
27
30
.10.1016/j.elecom.2015.05.001
21.
Cheng
,
E. J.
,
Sharafi
,
A.
, and
Sakamoto
,
J.
,
2017
, “
Intergranular Li Metal Propagation Through Polycrystalline Li6.25Al0.25La3Zr2O12 Ceramic Electrolyte
,”
Electrochim. Acta
,
223
, pp.
85
91
.10.1016/j.electacta.2016.12.018
22.
Basappa
,
R. H.
,
Ito
,
T.
, and
Yamada
,
H.
,
2017
, “
Contact Between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention
,”
J. Electrochem. Soc.
,
164
(
4
), p.
A666
.10.1149/2.0841704jes
23.
Vishnugopi
,
B. S.
,
Dixit
,
M. B.
,
Hao
,
F.
,
Shyam
,
B.
,
Cook
,
J. B.
,
Hatzell
,
K. B.
, and
Mukherjee
,
P. P.
,
2022
, “
Mesoscale Interrogation Reveals Mechanistic Origins of Lithium Filaments Along Grain Boundaries in Inorganic Solid Electrolytes
,”
Adv. Energy Mater.
,
12
(
3
), p.
2102825
.10.1002/aenm.202102825
24.
Shen
,
F.
,
Dixit
,
M. B.
,
Xiao
,
X.
, and
Hatzell
,
K. B.
,
2018
, “
Effect of Pore Connectivity on Li Dendrite Propagation Within LLZO Electrolytes Observed With Synchrotron X-Ray Tomography
,”
ACS Energy Lett.
,
3
(
4
), pp.
1056
1061
.10.1021/acsenergylett.8b00249
25.
Dixit
,
M. B.
,
Regala
,
M.
,
Shen
,
F.
,
Xiao
,
X.
, and
Hatzell
,
K. B.
,
2018
, “
Tortuosity Effects in Garnet-Type Li7La3Zr2O12 Solid Electrolytes
,”
ACS Appl. Mater. Interfaces
,
11
(
2
), pp.
2022
2030
.10.1021/acsami.8b16536
26.
Barai
,
P.
,
Higa
,
K.
,
Ngo
,
A. T.
,
Curtiss
,
L. A.
, and
Srinivasan
,
V.
,
2019
, “
Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries
,”
J. Electrochem. Soc.
,
166
(
10
), p.
A1752
.10.1149/2.0321910jes
27.
Lu
,
Z.
,
Yang
,
Z.
,
Li
,
C.
,
Wang
,
K.
,
Han
,
J.
,
Tong
,
P.
,
Li
,
G.
,
Vishnugopi
,
B. S.
,
Mukherjee
,
P. P.
, and
Yang
,
C.
,
2021
, “
Modulating Nanoinhomogeneity at Electrode–Solid Electrolyte Interfaces for Dendrite‐Proof Solid‐State Batteries and Long‐Life Memristors
,”
Adv. Energy Mater.
,
11
(
16
), p.
2003811
.10.1002/aenm.202003811
28.
Porz
,
L.
,
Swamy
,
T.
,
Sheldon
,
B. W.
,
Rettenwander
,
D.
,
Frömling
,
T.
,
Thaman
,
H. L.
,
Berendts
,
S.
,
Uecker
,
R.
,
Carter
,
W. C.
, and
Chiang
,
Y. M.
,
2017
, “
Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes
,”
Adv. Energy Mater.
,
7
(
20
), p.
1701003
.10.1002/aenm.201701003
29.
Tu
,
Q.
,
Barroso-Luque
,
L.
,
Shi
,
T.
, and
Ceder
,
G.
,
2020
, “
Electrodeposition and Mechanical Stability at Lithium-Solid Electrolyte Interface During Plating in Solid-State Batteries
,”
Cell Rep. Phys. Sci.
,
1
(
7
), p.
100106
.10.1016/j.xcrp.2020.100106
30.
Masias
,
A.
,
Felten
,
N.
,
Garcia-Mendez
,
R.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2019
, “
Elastic, Plastic, and Creep Mechanical Properties of Lithium Metal
,”
J. Mater. Sci.
,
54
(
3
), pp.
2585
2600
.10.1007/s10853-018-2971-3
31.
Kazyak
,
E.
,
Garcia-Mendez
,
R.
,
LePage
,
W. S.
,
Sharafi
,
A.
,
Davis
,
A. L.
,
Sanchez
,
A. J.
,
Chen
,
K.-H.
,
Haslam
,
C.
,
Sakamoto
,
J.
, and
Dasgupta
,
N. P.
,
2020
, “
Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility
,”
Matter
,
2
(
4
), pp.
1025
1048
.10.1016/j.matt.2020.02.008
32.
Kasemchainan
,
J.
,
Zekoll
,
S.
,
Spencer Jolly
,
D.
,
Ning
,
Z.
,
Hartley
,
G. O.
,
Marrow
,
J.
, and
Bruce
,
P. G.
,
2019
, “
Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells
,”
Nat. Mater.
,
18
(
10
), pp.
1105
1111
.10.1038/s41563-019-0438-9
33.
Yu
,
S.
, and
Siegel
,
D. J.
,
2017
, “
Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO)
,”
Chem. Mater.
,
29
(
22
), pp.
9639
9647
.10.1021/acs.chemmater.7b02805
34.
Dawson
,
J. A.
,
Canepa
,
P.
,
Famprikis
,
T.
,
Masquelier
,
C.
, and
Islam
,
M. S.
,
2018
, “
Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries
,”
J. Am. Chem. Soc.
,
140
(
1
), pp.
362
368
.10.1021/jacs.7b10593
35.
Dawson
,
J. A.
,
Canepa
,
P.
,
Clarke
,
M. J.
,
Famprikis
,
T.
,
Ghosh
,
D.
, and
Islam
,
M. S.
,
2019
, “
Toward Understanding the Different Influences of Grain Boundaries on Ion Transport in Sulfide and Oxide Solid Electrolytes
,”
Chem. Mater.
,
31
(
14
), pp.
5296
5304
.10.1021/acs.chemmater.9b01794
36.
Neumann
,
A.
,
Hamann
,
T. R.
,
Danner
,
T.
,
Hein
,
S.
,
Becker-Steinberger
,
K.
,
Wachsman
,
E.
, and
Latz
,
A.
,
2021
, “
Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes
,”
ACS Appl. Energy Mater.
,
4
(
5
), pp.
4786
4804
.10.1021/acsaem.1c00362
37.
Yu
,
S.
, and
Siegel
,
D. J.
,
2018
, “
Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration Through Stiff Solid Electrolytes
,”
ACS Appl. Mater. Interfaces
,
10
(
44
), pp.
38151
38158
.10.1021/acsami.8b17223
38.
Lewis
,
J. A.
,
Cortes
,
F. J. Q.
,
Liu
,
Y.
,
Miers
,
J. C.
,
Verma
,
A.
,
Vishnugopi
,
B. S.
,
Tippens
,
J.
,
Prakash
,
D.
,
Marchese
,
T. S.
, and
Han
,
S. Y.
,
2021
, “
Linking Void and Interphase Evolution to Electrochemistry in Solid-State Batteries Using Operando X-Ray Tomography
,”
Nat. Mater.
,
20
(
4
), pp.
503
510
.10.1038/s41563-020-00903-2
39.
Wang
,
M. J.
,
Choudhury
,
R.
, and
Sakamoto
,
J.
,
2019
, “
Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density
,”
Joule
,
3
(
9
), pp.
2165
2178
.10.1016/j.joule.2019.06.017
40.
Zhang
,
X.
,
Wang
,
Q. J.
,
Harrison
,
K. L.
,
Roberts
,
S. A.
, and
Harris
,
S. J.
,
2020
, “
Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries
,”
Cell Rep. Phys. Sci.
,
1
(
2
), p.
100012
.10.1016/j.xcrp.2019.100012
41.
Yonemoto
,
F.
,
Nishimura
,
A.
,
Motoyama
,
M.
,
Tsuchimine
,
N.
,
Kobayashi
,
S.
, and
Iriyama
,
Y.
,
2017
, “
Temperature Effects on Cycling Stability of Li Plating/Stripping on Ta-Doped Li7La3Zr2O12
,”
J. Power Sources
,
343
, pp.
207
215
.10.1016/j.jpowsour.2017.01.009
42.
Krauskopf
,
T.
,
Hartmann
,
H.
,
Zeier
,
W. G.
, and
Janek
,
J. R.
,
2019
, “
Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries—An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12
,”
ACS Appl. Mater. Interfaces
,
11
(
15
), pp.
14463
14477
.10.1021/acsami.9b02537
43.
Verma
,
A.
,
Kawakami
,
H.
,
Wada
,
H.
,
Hirowatari
,
A.
,
Ikeda
,
N.
,
Mizuno
,
Y.
,
Kotaka
,
T.
,
Aotani
,
K.
,
Tabuchi
,
Y.
, and
Mukherjee
,
P. P.
,
2021
, “
Microstructure and Pressure-Driven Electrodeposition Stability in Solid-State Batteries
,”
Cell Rep. Phys. Sci.
,
2
(
1
), p.
100301
.10.1016/j.xcrp.2020.100301
44.
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2020
, “
Molar Volume Mismatch: A Malefactor for Irregular Metallic Electrodeposition With Solid Electrolytes
,”
J. Electrochem. Soc.
,
167
(
8
), p.
082510
.10.1149/1945-7111/ab8ecd
45.
Liu
,
X.
,
Garcia-Mendez
,
R.
,
Lupini
,
A. R.
,
Cheng
,
Y.
,
Hood
,
Z. D.
,
Han
,
F.
,
Sharafi
,
A.
,
Idrobo
,
J. C.
,
Dudney
,
N. J.
, and
Wang
,
C.
,
2021
, “
Local Electronic Structure Variation Resulting in Li ‘Filament’formation Within Solid Electrolytes
,”
Nat. Mater.
,
20
(
11
), pp.
1485
1490
.10.1038/s41563-021-01019-x
46.
Han
,
F.
,
Westover
,
A. S.
,
Yue
,
J.
,
Fan
,
X.
,
Wang
,
F.
,
Chi
,
M.
,
Leonard
,
D. N.
,
Dudney
,
N. J.
,
Wang
,
H.
, and
Wang
,
C.
,
2019
, “
High Electronic Conductivity as the Origin of Lithium Dendrite Formation Within Solid Electrolytes
,”
Nat. Energy
,
4
(
3
), pp.
187
196
.10.1038/s41560-018-0312-z
47.
Naik
,
K. G.
,
Chatterjee
,
D.
, and
Mukherjee
,
P. P.
,
2022
, “
Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability
,”
ACS Appl. Mater. Interfaces
,
14
(
40
), pp.
45308
45319
.10.1021/acsami.2c11339
48.
Ye
,
L.
, and
Li
,
X.
,
2021
, “
A Dynamic Stability Design Strategy for Lithium Metal Solid State Batteries
,”
Nature
,
593
(
7858
), pp.
218
222
.10.1038/s41586-021-03486-3
49.
Nie
,
K.
,
Hong
,
Y.
,
Qiu
,
J.
,
Li
,
Q.
,
Yu
,
X.
,
Li
,
H.
, and
Chen
,
L.
,
2018
, “
Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives
,”
Front. Chem.
,
6
, p.
616
.10.3389/fchem.2018.00616
50.
Lou
,
S.
,
Zhang
,
F.
,
Fu
,
C.
,
Chen
,
M.
,
Ma
,
Y.
,
Yin
,
G.
, and
Wang
,
J.
,
2021
, “
Interface Issues and Challenges in All‐Solid‐State Batteries: Lithium, Sodium, and Beyond
,”
Adv. Mater.
,
33
(
6
), p.
2000721
.10.1002/adma.202000721
51.
Kim
,
K. J.
,
Balaish
,
M.
,
Wadaguchi
,
M.
,
Kong
,
L.
, and
Rupp
,
J. L.
,
2021
, “
Solid‐State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces
,”
Adv. Energy Mater.
,
11
(
1
), p.
2002689
.10.1002/aenm.202002689
52.
Famprikis
,
T.
,
Canepa
,
P.
,
Dawson
,
J. A.
,
Islam
,
M. S.
, and
Masquelier
,
C.
,
2019
, “
Fundamentals of Inorganic Solid-State Electrolytes for Batteries
,”
Nat. Mater.
,
18
(
12
), pp.
1278
1291
.10.1038/s41563-019-0431-3
53.
Müller
,
S.
,
Pietsch
,
P.
,
Brandt
,
B.-E.
,
Baade
,
P.
,
De Andrade
,
V.
,
De Carlo
,
F.
, and
Wood
,
V.
,
2018
, “
Quantification and Modeling of Mechanical Degradation in Lithium-Ion Batteries Based on Nanoscale Imaging
,”
Nat. Commun.
,
9
(
1
), pp.
1
8
.10.1038/s41467-018-04477-1
54.
Iqbal
,
N.
,
Ali
,
Y.
, and
Lee
,
S.
,
2020
, “
Mechanical Degradation Analysis of a Single Electrode Particle With Multiple Binder Connections: A Comparative Study
,”
Int. J. Mech. Sci.
,
188
, p.
105943
.10.1016/j.ijmecsci.2020.105943
55.
Wang
,
M.
, and
Sakamoto
,
J.
,
2018
, “
Correlating the Interface Resistance and Surface Adhesion of the Li Metal-Solid Electrolyte Interface
,”
J. Power Sources
,
377
, pp.
7
11
.10.1016/j.jpowsour.2017.11.078
56.
Barai
,
P.
,
Rojas
,
T.
,
Narayanan
,
B.
,
Ngo
,
A. T.
,
Curtiss
,
L. A.
, and
Srinivasan
,
V.
,
2021
, “
Investigation of Delamination-Induced Performance Decay at the Cathode/LLZO Interface
,”
Chem. Mater.
,
33
(
14
), pp.
5527
5541
.10.1021/acs.chemmater.0c04656
57.
Iqbal
,
N.
,
Ali
,
Y.
, and
Lee
,
S.
,
2020
, “
Analysis of Mechanical Failure at the Interface Between Graphite Particles and Polyvinylidene Fluoride Binder in Lithium-Ion Batteries
,”
J. Power Sources
,
457
, p.
228019
.10.1016/j.jpowsour.2020.228019
58.
Wu
,
Y.
, and
Guo
,
Z.-S.
,
2021
, “
Modeling Li-Ion Concentration Distribution and Stress of Porous Electrode Particles Considering Binder and Direct Particle Contact
,”
J. Energy Storage
,
44
, p.
103315
.10.1016/j.est.2021.103315
59.
Bucci
,
G.
,
Swamy
,
T.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2017
, “
Modeling of Internal Mechanical Failure of All-Solid-State Batteries During Electrochemical Cycling, and Implications for Battery Design
,”
J. Mater. Chem. A
,
5
(
36
), pp.
19422
19430
.10.1039/C7TA03199H
60.
Yu
,
H.-C.
,
Taha
,
D.
,
Thompson
,
T.
,
Taylor
,
N. J.
,
Drews
,
A.
,
Sakamoto
,
J.
, and
Thornton
,
K.
,
2019
, “
Deformation and Stresses in Solid-State Composite Battery Cathodes
,”
J. Power Sources
,
440
, p.
227116
.10.1016/j.jpowsour.2019.227116
61.
Koerver
,
R.
,
Zhang
,
W.
,
de Biasi
,
L.
,
Schweidler
,
S.
,
Kondrakov
,
A. O.
,
Kolling
,
S.
,
Brezesinski
,
T.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2018
, “
Chemo-Mechanical Expansion of Lithium Electrode Materials–On the Route to Mechanically Optimized All-Solid-State Batteries
,”
Energy Environ. Sci.
,
11
(
8
), pp.
2142
2158
.10.1039/C8EE00907D
62.
Yang
,
X.
,
Luo
,
J.
, and
Sun
,
X.
,
2020
, “
Towards High-Performance Solid-State Li–S Batteries: From Fundamental Understanding to Engineering Design
,”
Chem. Soc. Rev.
,
49
(
7
), pp.
2140
2195
.10.1039/C9CS00635D
63.
Lei
,
D.
,
Shi
,
K.
,
Ye
,
H.
,
Wan
,
Z.
,
Wang
,
Y.
,
Shen
,
L.
,
Li
,
B.
,
Yang
,
Q. H.
,
Kang
,
F.
, and
He
,
Y. B.
,
2018
, “
Progress and Perspective of Solid‐State Lithium–Sulfur Batteries
,”
Adv. Funct. Mater.
,
28
(
38
), p.
1707570
.10.1002/adfm.201707570
64.
Ding
,
B.
,
Wang
,
J.
,
Fan
,
Z.
,
Chen
,
S.
,
Lin
,
Q.
,
Lu
,
X.
,
Dou
,
H.
,
Nanjundan
,
A. K.
,
Yushin
,
G.
, and
Zhang
,
X.
,
2020
, “
Solid-State Lithium–Sulfur Batteries: Advances, Challenges and Perspectives
,”
Mater. Today
,
40
, pp.
114
131
.10.1016/j.mattod.2020.05.020
65.
Barai
,
P.
,
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2016
, “
Poromechanical Effect in the Lithium–Sulfur Battery Cathode
,”
Extreme Mech. Lett.
,
9
, pp.
359
370
.10.1016/j.eml.2016.05.007
66.
Yue
,
J.
,
Yan
,
M.
,
Yin
,
Y. X.
, and
Guo
,
Y. G.
,
2018
, “
Progress of the Interface Design in All‐Solid‐State Li–S Batteries
,”
Adv. Funct. Mater.
,
28
(
38
), p.
1707533
.10.1002/adfm.201707533
67.
Xia
,
Y.
,
Wang
,
X.
,
Xia
,
X.
,
Xu
,
R.
,
Zhang
,
S.
,
Wu
,
J.
,
Liang
,
Y.
,
Gu
,
C.
, and
Tu
,
J.
,
2017
, “
A Newly Designed Composite Gel Polymer Electrolyte Based on Poly (Vinylidene Fluoride‐Hexafluoropropylene)(PVDF‐HFP) for Enhanced Solid‐State Lithium‐Sulfur Batteries
,”
Chem. A Eur. J.
,
23
(
60
), pp.
15203
15209
.10.1002/chem.201703464
68.
Zhu
,
Y.
,
He
,
X.
, and
Mo
,
Y.
,
2015
, “
Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights From Thermodynamic Analyses Based on First-Principles Calculations
,”
ACS Appl. Mater. Interfaces
,
7
(
42
), pp.
23685
23693
.10.1021/acsami.5b07517
69.
Shen
,
X.
,
Zhang
,
R.
,
Chen
,
X.
,
Cheng
,
X. B.
,
Li
,
X.
, and
Zhang
,
Q.
,
2020
, “
The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?
,”
Adv. Energy Mater.
,
10
(
10
), p.
1903645
.10.1002/aenm.201903645
70.
Shen
,
X.
,
Zhang
,
R.
,
Shi
,
P.
,
Chen
,
X.
, and
Zhang
,
Q.
,
2021
, “
How Does External Pressure Shape Li Dendrites in Li Metal Batteries?
,”
Adv. Energy Mater.
,
11
(
10
), p.
2003416
.10.1002/aenm.202003416
71.
Liu
,
Y.
,
Xu
,
X.
,
Sadd
,
M.
,
Kapitanova
,
O. O.
,
Krivchenko
,
V. A.
,
Ban
,
J.
,
Wang
,
J.
,
Jiao
,
X.
,
Song
,
Z.
, and
Song
,
J.
,
2021
, “
Insight Into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal
,”
Adv. Sci.
,
8
(
5
), p.
2003301
.10.1002/advs.202003301
72.
Liu
,
B.
,
Zhang
,
J.-G.
, and
Xu
,
W.
,
2018
, “
Advancing Lithium Metal Batteries
,”
Joule
,
2
(
5
), pp.
833
845
.10.1016/j.joule.2018.03.008
73.
Zhang
,
X.
,
Yang
,
Y.
, and
Zhou
,
Z.
,
2020
, “
Towards Practical Lithium-Metal Anodes
,”
Chem. Soc. Rev.
,
49
(
10
), pp.
3040
3071
.10.1039/C9CS00838A
74.
Lin
,
D.
,
Liu
,
Y.
,
Pei
,
A.
, and
Cui
,
Y.
,
2017
, “
Nanoscale Perspective: Materials Designs and Understandings in Lithium Metal Anodes
,”
Nano Res.
,
10
(
12
), pp.
4003
4026
.10.1007/s12274-017-1596-1
75.
Fang
,
C.
,
Wang
,
X.
, and
Meng
,
Y. S.
,
2019
, “
Key Issues Hindering a Practical Lithium-Metal Anode
,”
Trends Chem.
,
1
(
2
), pp.
152
158
.10.1016/j.trechm.2019.02.015
76.
Ghazi
,
Z. A.
,
Sun
,
Z.
,
Sun
,
C.
,
Qi
,
F.
,
An
,
B.
,
Li
,
F.
, and
Cheng
,
H. M.
,
2019
, “
Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries
,”
Small
,
15
(
32
), p.
1900687
.10.1002/smll.201900687
77.
Wu
,
H.
,
Jia
,
H.
,
Wang
,
C.
,
Zhang
,
J. G.
, and
Xu
,
W.
,
2021
, “
Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes
,”
Adv. Energy Mater.
,
11
(
5
), p.
2003092
.10.1002/aenm.202003092
78.
Cheng
,
X. B.
,
Zhang
,
R.
,
Zhao
,
C. Z.
,
Wei
,
F.
,
Zhang
,
J. G.
, and
Zhang
,
Q.
,
2016
, “
A Review of Solid Electrolyte Interphases on Lithium Metal Anode
,”
Adv. Science
,
3
(
3
), p.
1500213
.10.1002/advs.201500213
79.
Jurng
,
S.
,
Brown
,
Z. L.
,
Kim
,
J.
, and
Lucht
,
B. L.
,
2018
, “
Effect of Electrolyte on the Nanostructure of the Solid Electrolyte Interphase (SEI) and Performance of Lithium Metal Anodes
,”
Energy Environ. Sci.
,
11
(
9
), pp.
2600
2608
.10.1039/C8EE00364E
80.
Zhao
,
Q.
,
Stalin
,
S.
, and
Archer
,
L. A.
,
2021
, “
Stabilizing Metal Battery Anodes Through the Design of Solid Electrolyte Interphases
,”
Joule
,
5
(
5
), pp.
1119
1142
.10.1016/j.joule.2021.03.024
81.
Wu
,
M.
,
Li
,
Y.
,
Liu
,
X.
,
Yang
,
S.
,
Ma
,
J.
, and
Dou
,
S.
,
2021
, “
Perspective on Solid‐Electrolyte Interphase Regulation for Lithium Metal Batteries
,”
SmartMat
,
2
(
1
), pp.
5
11
.10.1002/smm2.1015
82.
Wood
,
K. N.
,
Noked
,
M.
, and
Dasgupta
,
N. P.
,
2017
, “
Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
,”
ACS Energy Lett.
,
2
(
3
), pp.
664
672
.10.1021/acsenergylett.6b00650
83.
Ma
,
X.-X.
,
Shen
,
X.
,
Chen
,
X.
,
Fu
,
Z.-H.
,
Yao
,
N.
,
Zhang
,
R.
, and
Zhang
,
Q.
,
2022
, “
The Origin of Fast Lithium‐Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes
,”
Small Struct.
,
3
(
8
), p.
2200071
.10.1002/sstr.202200071
84.
Ramasubramanian
,
A.
,
Yurkiv
,
V.
,
Foroozan
,
T.
,
Ragone
,
M.
,
Shahbazian-Yassar
,
R.
, and
Mashayek
,
F.
,
2020
, “
Stability of Solid-Electrolyte Interphase (SEI) on the Lithium Metal Surface in Lithium Metal Batteries (LMBs)
,”
ACS Appl. Energy Mater.
,
3
(
11
), pp.
10560
10567
.10.1021/acsaem.0c01605
85.
Hao
,
F.
,
Verma
,
A.
, and
Mukherjee
,
P. P.
,
2018
, “
Mechanistic Insight Into Dendrite–SEI Interactions for Lithium Metal Electrodes
,”
J. Mater. Chem. A
,
6
(
40
), pp.
19664
19671
.10.1039/C8TA07997H
86.
Liu
,
Y.
,
Xu
,
X.
,
Kapitanova
,
O. O.
,
Evdokimov
,
P. V.
,
Song
,
Z.
,
Matic
,
A.
, and
Xiong
,
S.
,
2022
, “
Electro‐Chemo‐Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes
,”
Adv. Energy Mater.
,
12
(
9
), p.
2103589
.10.1002/aenm.202103589
87.
Liu
,
F.
,
Xu
,
R.
,
Wu
,
Y.
,
Boyle
,
D. T.
,
Yang
,
A.
,
Xu
,
J.
,
Zhu
,
Y.
,
Ye
,
Y.
,
Yu
,
Z.
, and
Zhang
,
Z.
,
2021
, “
Dynamic Spatial Progression of Isolated Lithium During Battery Operations
,”
Nature
,
600
(
7890
), pp.
659
663
.10.1038/s41586-021-04168-w
88.
Fang
,
C.
,
Li
,
J.
,
Zhang
,
M.
,
Zhang
,
Y.
,
Yang
,
F.
,
Lee
,
J. Z.
,
Lee
,
M.-H.
,
Alvarado
,
J.
,
Schroeder
,
M. A.
, and
Yang
,
Y.
,
2019
, “
Quantifying Inactive Lithium in Lithium Metal Batteries
,”
Nature
,
572
(
7770
), pp.
511
515
.10.1038/s41586-019-1481-z
89.
Gunnarsdóttir
,
A. B.
,
Amanchukwu
,
C. V.
,
Menkin
,
S.
, and
Grey
,
C. P.
,
2020
, “
Noninvasive in Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries
,”
J. Am. Chem. Soc.
,
142
(
49
), pp.
20814
20827
.10.1021/jacs.0c10258
90.
Hsieh
,
Y.-C.
,
Leißing
,
M.
,
Nowak
,
S.
,
Hwang
,
B.-J.
,
Winter
,
M.
, and
Brunklaus
,
G.
,
2020
, “
Quantification of Dead Lithium Via in Situ Nuclear Magnetic Resonance Spectroscopy
,”
Cell Rep. Phys. Sci.
,
1
(
8
), p.
100139
.10.1016/j.xcrp.2020.100139
91.
Lu
,
D.
,
Shao
,
Y.
,
Lozano
,
T.
,
Bennett
,
W. D.
,
Graff
,
G. L.
,
Polzin
,
B.
,
Zhang
,
J.
,
Engelhard
,
M. H.
,
Saenz
,
N. T.
, and
Henderson
,
W. A.
,
2015
, “
Failure Mechanism for Fast‐Charged Lithium Metal Batteries With Liquid Electrolytes
,”
Adv. Energy Mater.
,
5
(
3
), p.
1400993
.10.1002/aenm.201400993
92.
Thenuwara
,
A. C.
,
Shetty
,
P. P.
,
Kondekar
,
N.
,
Sandoval
,
S. E.
,
Cavallaro
,
K.
,
May
,
R.
,
Yang
,
C.-T.
,
Marbella
,
L. E.
,
Qi
,
Y.
, and
McDowell
,
M. T.
,
2020
, “
Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase
,”
ACS Energy Lett.
,
5
(
7
), pp.
2411
2420
.10.1021/acsenergylett.0c01209
93.
May
,
R.
,
Fritzsching
,
K. J.
,
Livitz
,
D.
,
Denny
,
S. R.
, and
Marbella
,
L. E.
,
2021
, “
Rapid Interfacial Exchange of Li Ions Dictates High Coulombic Efficiency in Li Metal Anodes
,”
ACS Energy Lett.
,
6
(
4
), pp.
1162
1169
.10.1021/acsenergylett.1c00112
94.
Tan
,
J.
,
Ye
,
M.
, and
Shen
,
J.
,
2021
, “
Tailoring Uniform and Ordered Grain Boundaries in the Solid Electrolyte Interphase for Dendrite-Free Lithium Metal Batteries
,”
Mater. Today Energy
,
22
, p.
100858
.10.1016/j.mtener.2021.100858
95.
Shi
,
F.
,
Pei
,
A.
,
Boyle
,
D. T.
,
Xie
,
J.
,
Yu
,
X.
,
Zhang
,
X.
, and
Cui
,
Y.
,
2018
, “
Lithium Metal Stripping Beneath the Solid Electrolyte Interphase
,”
Proc. Natl. Acad. Sci.
,
115
(
34
), pp.
8529
8534
.10.1073/pnas.1806878115
96.
Horstmann
,
B.
,
Shi
,
J.
,
Amine
,
R.
,
Werres
,
M.
,
He
,
X.
,
Jia
,
H.
,
Hausen
,
F.
,
Cekic-Laskovic
,
I.
,
Wiemers-Meyer
,
S.
, and
Lopez
,
J.
,
2021
, “
Strategies Towards Enabling Lithium Metal in Batteries: Interphases and Electrodes
,”
Energy Environ. Sci.
,
14
(
10
), pp.
5289
5314
.10.1039/D1EE00767J
97.
Hao
,
F.
,
Vishnugopi
,
B. S.
,
Wang
,
H.
, and
Mukherjee
,
P. P.
,
2022
, “
Chemomechanical Interactions Dictate Lithium Surface Diffusion Kinetics in the Solid Electrolyte Interphase
,”
Langmuir
,
38
(
18
), pp.
5472
5480
.10.1021/acs.langmuir.2c00017
98.
Huang
,
W.
,
Wang
,
H.
,
Boyle
,
D. T.
,
Li
,
Y.
, and
Cui
,
Y.
,
2020
, “
Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy
,”
ACS Energy Lett.
,
5
(
4
), pp.
1128
1135
.10.1021/acsenergylett.0c00194
99.
Menkin
,
S.
,
O'Keefe
,
C. A.
,
Gunnarsdóttir
,
A. B.
,
Dey
,
S.
,
Pesci
,
F. M.
,
Shen
,
Z.
,
Aguadero
,
A.
, and
Grey
,
C. P.
,
2021
, “
Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries
,”
J. Phys. Chem. C
,
125
(
30
), pp.
16719
16732
.10.1021/acs.jpcc.1c03877
100.
Meyerson
,
M. L.
,
Sheavly
,
J. K.
,
Dolocan
,
A.
,
Griffin
,
M. P.
,
Pandit
,
A. H.
,
Rodriguez
,
R.
,
Stephens
,
R. M.
,
Bout
,
D. A. V.
,
Heller
,
A.
, and
Mullins
,
C. B.
,
2019
, “
The Effect of Local Lithium Surface Chemistry and Topography on Solid Electrolyte Interphase Composition and Dendrite Nucleation
,”
J. Mater. Chem. A
,
7
(
24
), pp.
14882
14894
.10.1039/C9TA03371H
101.
Lang
,
S.-Y.
,
Shen
,
Z.-Z.
,
Hu
,
X.-C.
,
Shi
,
Y.
,
Guo
,
Y.-G.
,
Jia
,
F.-F.
,
Wang
,
F.-Y.
,
Wen
,
R.
, and
Wan
,
L.-J.
,
2020
, “
Tunable Structure and Dynamics of Solid Electrolyte Interphase at Lithium Metal Anode
,”
Nano Energy
,
75
, p.
104967
.10.1016/j.nanoen.2020.104967
102.
Yuan
,
S.
,
Weng
,
S.
,
Wang
,
F.
,
Dong
,
X.
,
Wang
,
Y.
,
Wang
,
Z.
,
Shen
,
C.
,
Bao
,
J. L.
,
Wang
,
X.
, and
Xia
,
Y.
,
2021
, “
Revisiting the Designing Criteria of Advanced Solid Electrolyte Interphase on Lithium Metal Anode Under Practical Condition
,”
Nano Energy
,
83
, p.
105847
.10.1016/j.nanoen.2021.105847
103.
Wan
,
G.
,
Guo
,
F.
,
Li
,
H.
,
Cao
,
Y.
,
Ai
,
X.
,
Qian
,
J.
,
Li
,
Y.
, and
Yang
,
H.
,
2018
, “
Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase
,”
ACS Appl. Mater. Interfaces
,
10
(
1
), pp.
593
601
.10.1021/acsami.7b14662
104.
Zhang
,
Z.
,
Li
,
Y.
,
Xu
,
R.
,
Zhou
,
W.
,
Li
,
Y.
,
Oyakhire
,
S. T.
,
Wu
,
Y.
,
Xu
,
J.
,
Wang
,
H.
, and
Yu
,
Z.
,
2022
, “
Capturing the Swelling of Solid-Electrolyte Interphase in Lithium Metal Batteries
,”
Science
,
375
(
6576
), pp.
66
70
.10.1126/science.abi8703
105.
Fang
,
C.
,
Lu
,
B.
,
Pawar
,
G.
,
Zhang
,
M.
,
Cheng
,
D.
,
Chen
,
S.
,
Ceja
,
M.
,
Doux
,
J.-M.
,
Musrock
,
H.
, and
Cai
,
M.
,
2021
, “
Pressure-Tailored Lithium Deposition and Dissolution in Lithium Metal Batteries
,”
Nat. Energy
,
6
(
10
), pp.
987
994
.10.1038/s41560-021-00917-3
106.
Pei
,
A.
,
Zheng
,
G.
,
Shi
,
F.
,
Li
,
Y.
, and
Cui
,
Y.
,
2017
, “
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
,”
Nano Lett.
,
17
(
2
), pp.
1132
1139
.10.1021/acs.nanolett.6b04755
107.
Biswal
,
P.
,
Stalin
,
S.
,
Kludze
,
A.
,
Choudhury
,
S.
, and
Archer
,
L. A.
,
2019
, “
Nucleation and Early Stage Growth of Li Electrodeposits
,”
Nano Lett.
,
19
(
11
), pp.
8191
8200
.10.1021/acs.nanolett.9b03548
108.
Hou
,
Z.
,
Zhang
,
J.
,
Wang
,
W.
,
Chen
,
Q.
,
Li
,
B.
, and
Li
,
C.
,
2020
, “
Towards High-Performance Lithium Metal Anodes Via the Modification of Solid Electrolyte Interphases
,”
J. Energy Chem.
,
45
, pp.
7
17
.10.1016/j.jechem.2019.09.028
109.
Jäckle
,
M.
,
Helmbrecht
,
K.
,
Smits
,
M.
,
Stottmeister
,
D.
, and
Groß
,
A.
,
2018
, “
Self-Diffusion Barriers: Possible Descriptors for Dendrite Growth in Batteries?
,”
Energy Environ. Sci.
,
11
(
12
), pp.
3400
3407
.10.1039/C8EE01448E
110.
Jäckle
,
M.
, and
Groß
,
A.
,
2014
, “
Microscopic Properties of Lithium, Sodium, and Magnesium Battery Anode Materials Related to Possible Dendrite Growth
,”
J. Chem. Phys.
,
141
(
17
), p.
174710
.10.1063/1.4901055
111.
Vishnugopi
,
B. S.
,
Hao
,
F.
,
Verma
,
A.
, and
Mukherjee
,
P. P.
,
2020
, “
Surface Diffusion Manifestation in Electrodeposition of Metal Anodes
,”
Phys. Chem. Chem. Phys.
,
22
(
20
), pp.
11286
11295
.10.1039/D0CP01352H
112.
Pande
,
V.
, and
Viswanathan
,
V.
,
2019
, “
Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries
,”
ACS Energy Lett.
,
4
(
12
), pp.
2952
2959
.10.1021/acsenergylett.9b02306
113.
Jin
,
C.
,
Liu
,
T.
,
Sheng
,
O.
,
Li
,
M.
,
Liu
,
T.
,
Yuan
,
Y.
,
Nai
,
J.
,
Ju
,
Z.
,
Zhang
,
W.
, and
Liu
,
Y.
,
2021
, “
Rejuvenating Dead Lithium Supply in Lithium Metal Anodes by Iodine Redox
,”
Nat. Energy
,
6
(
4
), pp.
378
387
.10.1038/s41560-021-00789-7
114.
Zhang
,
X.
,
Wang
,
Q. J.
,
Harrison
,
K. L.
,
Jungjohann
,
K.
,
Boyce
,
B. L.
,
Roberts
,
S. A.
,
Attia
,
P. M.
, and
Harris
,
S. J.
,
2019
, “
Rethinking How External Pressure Can Suppress Dendrites in Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
166
(
15
), p.
A3639
.10.1149/2.0701914jes
115.
Wang
,
J.
,
Huang
,
W.
,
Pei
,
A.
,
Li
,
Y.
,
Shi
,
F.
,
Yu
,
X.
, and
Cui
,
Y.
,
2019
, “
Improving Cyclability of Li Metal Batteries at Elevated Temperatures and Its Origin Revealed by Cryo-Electron Microscopy
,”
Nat. Energy
,
4
(
8
), pp.
664
670
.10.1038/s41560-019-0413-3
116.
Li
,
L.
,
Basu
,
S.
,
Wang
,
Y.
,
Chen
,
Z.
,
Hundekar
,
P.
,
Wang
,
B.
,
Shi
,
J.
,
Shi
,
Y.
,
Narayanan
,
S.
, and
Koratkar
,
N.
,
2018
, “
Self-Heating–Induced Healing of Lithium Dendrites
,”
Science
,
359
(
6383
), pp.
1513
1516
.10.1126/science.aap8787
117.
Vishnugopi
,
B. S.
,
Hao
,
F.
,
Verma
,
A.
, and
Mukherjee
,
P. P.
,
2020
, “
Double-Edged Effect of Temperature on Lithium Dendrites
,”
ACS Appl. Mater. Interfaces
,
12
(
21
), pp.
23931
23938
.10.1021/acsami.0c04355
118.
Yin
,
X.
,
Tang
,
W.
,
Phua
,
K. C.
,
Adams
,
S.
,
Lee
,
S. W.
, and
Zheng
,
G. W.
,
2018
, “
Insights Into Morphological Evolution and Cycling Behaviour of Lithium Metal Anode Under Mechanical Pressure
,”
Nano Energy
,
50
, pp.
659
664
.10.1016/j.nanoen.2018.06.003
119.
Liang
,
Z.
,
Lin
,
D.
,
Zhao
,
J.
,
Lu
,
Z.
,
Liu
,
Y.
,
Liu
,
C.
,
Lu
,
Y.
,
Wang
,
H.
,
Yan
,
K.
, and
Tao
,
X.
,
2016
, “
Composite Lithium Metal Anode by Melt Infusion of Lithium Into a 3D Conducting Scaffold With Lithiophilic Coating
,”
Proc. Natl. Acad. Sci.
,
113
(
11
), pp.
2862
2867
.10.1073/pnas.1518188113
120.
Lee
,
H.
,
Lee
,
D. J.
,
Kim
,
Y.-J.
,
Park
,
J.-K.
, and
Kim
,
H.-T.
,
2015
, “
A Simple Composite Protective Layer Coating That Enhances the Cycling Stability of Lithium Metal Batteries
,”
J. Power Sources
,
284
, pp.
103
108
.10.1016/j.jpowsour.2015.03.004
121.
Liu
,
W.
,
Lin
,
D.
,
Pei
,
A.
, and
Cui
,
Y.
,
2016
, “
Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
,”
J. Am. Chem. Soc.
,
138
(
47
), pp.
15443
15450
.10.1021/jacs.6b08730
122.
Zhang
,
R.
,
Li
,
N. W.
,
Cheng
,
X. B.
,
Yin
,
Y. X.
,
Zhang
,
Q.
, and
Guo
,
Y. G.
,
2017
, “
Advanced Micro/Nanostructures for Lithium Metal Anodes
,”
Adv. Sci.
,
4
(
3
), p.
1600445
.10.1002/advs.201600445
123.
Wang
,
S. H.
,
Yin
,
Y. X.
,
Zuo
,
T. T.
,
Dong
,
W.
,
Li
,
J. Y.
,
Shi
,
J. L.
,
Zhang
,
C. H.
,
Li
,
N. W.
,
Li
,
C. J.
, and
Guo
,
Y. G.
,
2017
, “
Stable Li Metal Anodes Via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels
,”
Adv. Mater.
,
29
(
40
), p.
1703729
.10.1002/adma.201703729
124.
Li
,
S.
,
Luo
,
Z.
,
Li
,
L.
,
Hu
,
J.
,
Zou
,
G.
,
Hou
,
H.
, and
Ji
,
X.
,
2020
, “
Recent Progress on Electrolyte Additives for Stable Lithium Metal Anode
,”
Energy Storage Mater.
,
32
, pp.
306
319
.10.1016/j.ensm.2020.07.008
125.
Vishnugopi
,
B. S.
,
Hao
,
F.
,
Verma
,
A.
,
Marbella
,
L. E.
,
Viswanathan
,
V.
, and
Mukherjee
,
P. P.
,
2021
, “
Co-Electrodeposition Mechanism in Rechargeable Metal Batteries
,”
ACS Energy Lett.
,
6
(
6
), pp.
2190
2197
.10.1021/acsenergylett.1c00677
126.
Albertus
,
P.
,
Babinec
,
S.
,
Litzelman
,
S.
, and
Newman
,
A.
,
2017
, “
Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries
,”
Nat. Energy
,
3
(
1
), pp.
16
21
.10.1038/s41560-017-0047-2
127.
Janek
,
J.
, and
Zeier
,
W. G.
,
2016
, “
A Solid Future for Battery Development
,”
Nat. Energy
,
1
(
9
), pp.
1
4
.10.1038/nenergy.2016.14
128.
Albertus
,
P.
,
Anandan
,
V.
,
Ban
,
C.
,
Balsara
,
N.
,
Belharouak
,
I.
,
Buettner-Garrett
,
J.
,
Chen
,
Z.
,
Daniel
,
C.
,
Doeff
,
M.
, and
Dudney
,
N. J.
,
2021
, “
Challenges for and Pathways Toward Li-Metal-Based All-Solid-State Batteries
,”
ACS Energy Lett.
, 6(4), pp. 1399–1404.
10.1021/acsenergylett.1c00445
129.
Sun
,
Y.-K.
,
2020
, “
Promising All-Solid-State Batteries for Future Electric Vehicles
,”
ACS Publ.
,
5
(
10
), pp.
3221
3223
.10.1021/acsenergylett.0c01977
130.
Yang
,
X.
,
Adair
,
K. R.
,
Gao
,
X.
, and
Sun
,
X.
,
2021
, “
Recent Advances and Perspectives on Thin Electrolytes for High-Energy-Density Solid-State Lithium Batteries
,”
Energy Environ. Sci.
,
14
(
2
), pp.
643
671
.10.1039/D0EE02714F
131.
Gao
,
Z.
,
Sun
,
H.
,
Fu
,
L.
,
Ye
,
F.
,
Zhang
,
Y.
,
Luo
,
W.
, and
Huang
,
Y.
,
2018
, “
Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries
,”
Adv. Mater.
,
30
(
17
), p.
1705702
.10.1002/adma.201705702
132.
Lu
,
Y.
,
Zhao
,
C. Z.
,
Yuan
,
H.
,
Cheng
,
X. B.
,
Huang
,
J. Q.
, and
Zhang
,
Q.
,
2021
, “
Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies
,”
Adv. Funct. Mater.
,
31
(
18
), p.
2009925
.10.1002/adfm.202009925
133.
Tippens
,
J.
,
Miers
,
J. C.
,
Afshar
,
A.
,
Lewis
,
J. A.
,
Cortes
,
F. J. Q.
,
Qiao
,
H.
,
Marchese
,
T. S.
,
Di Leo
,
C. V.
,
Saldana
,
C.
, and
McDowell
,
M. T.
,
2019
, “
Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte
,”
ACS Energy Lett.
,
4
(
6
), pp.
1475
1483
.10.1021/acsenergylett.9b00816
134.
Ning
,
Z.
,
Jolly
,
D. S.
,
Li
,
G.
,
De Meyere
,
R.
,
Pu
,
S. D.
,
Chen
,
Y.
,
Kasemchainan
,
J.
,
Ihli
,
J.
,
Gong
,
C.
,
Liu
,
B.
,
Melvin
,
D. L. R.
,
Bonnin
,
A.
,
Magdysyuk
,
O.
,
Adamson
,
P.
,
Hartley
,
G. O.
,
Monroe
,
C. W.
,
Marrow
,
T. J.
, and
Bruce
,
P. G.
,
2021
, “
Visualizing Plating-Induced Cracking in Lithium-Anode Solid-Electrolyte Cells
,”
Nat. Mater.
,
20
(
8
), pp.
1121
1129
.10.1038/s41563-021-00967-8
135.
Dixit
,
M. B.
,
Vishugopi
,
B. S.
,
Zaman
,
W.
,
Kenesei
,
P.
,
Park
,
J.-S.
,
Almer
,
J.
,
Mukherjee
,
P. P.
, and
Hatzell
,
K. B.
,
2022
, “
Polymorphism of Garnet Solid Electrolytes and Its Implications for Grain-Level Chemo-Mechanics
,”
Nat. Mater.
,
21
(
11
), pp.
1298
1305
.10.1038/s41563-022-01333-y
136.
Lewis
,
J. A.
,
Cortes
,
F. J. Q.
,
Boebinger
,
M. G.
,
Tippens
,
J.
,
Marchese
,
T. S.
,
Kondekar
,
N.
,
Liu
,
X.
,
Chi
,
M.
, and
McDowell
,
M. T.
,
2019
, “
Interphase Morphology Between a Solid-State Electrolyte and Lithium Controls Cell Failure
,”
ACS Energy Lett.
,
4
(
2
), pp.
591
599
.10.1021/acsenergylett.9b00093
137.
Krauskopf
,
T.
,
Dippel
,
R.
,
Hartmann
,
H.
,
Peppler
,
K.
,
Mogwitz
,
B.
,
Richter
,
F. H.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2019
, “
Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes
,”
Joule
,
3
(
8
), pp.
2030
2049
.10.1016/j.joule.2019.06.013
138.
Vishnugopi
,
B. S.
,
Hasan
,
M. T.
,
Zhou
,
H.
, and
Mukherjee
,
P. P.
,
2023
, “
Interphases and Electrode Crosstalk Dictate the Thermal Stability of Solid-State Batteries
,”
ACS Energy Lett.
,
8
(
1
), pp.
398
407
.10.1021/acsenergylett.2c02443
139.
Liu
,
J.
,
Yuan
,
H.
,
Liu
,
H.
,
Zhao
,
C. Z.
,
Lu
,
Y.
,
Cheng
,
X. B.
,
Huang
,
J. Q.
, and
Zhang
,
Q.
,
2022
, “
Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries
,”
Adv. Energy Mater.
,
12
(
4
), p.
2100748
.10.1002/aenm.202100748
140.
Wang
,
P.
,
Qu
,
W.
,
Song
,
W. L.
,
Chen
,
H.
,
Chen
,
R.
, and
Fang
,
D.
,
2019
, “
Electro–Chemo–Mechanical Issues at the Interfaces in Solid‐State Lithium Metal Batteries
,”
Adv. Funct. Mater.
,
29
(
27
), p.
1900950
.10.1002/adfm.201900950
141.
Hao
,
S.
,
Bailey
,
J. J.
,
Iacoviello
,
F.
,
Bu
,
J.
,
Grant
,
P. S.
,
Brett
,
D. J.
, and
Shearing
,
P. R.
,
2021
, “
3D Imaging of Lithium Protrusions in Solid‐State Lithium Batteries Using X‐Ray Computed Tomography
,”
Adv. Funct. Mater.
,
31
(
10
), p.
2007564
.10.1002/adfm.202007564
142.
Krauskopf
,
T.
,
Mogwitz
,
B.
,
Hartmann
,
H.
,
Singh
,
D. K.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2020
, “
The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnet‐Type Solid Electrolyte Li6.25Al0.25La3Zr2O12
,”
Adv. Energy Mater.
,
10
(
27
), p.
2000945
.10.1002/aenm.202000945
143.
Barai
,
P.
,
Ngo
,
A. T.
,
Narayanan
,
B.
,
Higa
,
K.
,
Curtiss
,
L. A.
, and
Srinivasan
,
V.
,
2020
, “
The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes
,”
J. Electrochem. Soc.
,
167
(
10
), p.
100537
.10.1149/1945-7111/ab9b08
144.
Doux
,
J. M.
,
Nguyen
,
H.
,
Tan
,
D. H.
,
Banerjee
,
A.
,
Wang
,
X.
,
Wu
,
E. A.
,
Jo
,
C.
,
Yang
,
H.
, and
Meng
,
Y. S.
,
2020
, “
Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries
,”
Adv. Energy Mater.
,
10
(
1
), p.
1903253
.10.1002/aenm.201903253
145.
Hänsel
,
C.
, and
Kundu
,
D.
,
2021
, “
The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solid‐State Batteries: A Case Study With Li6PS5Cl Solid Electrolyte
,”
Adv. Mater. Interfaces
,
8
(
10
), p.
2100206
.10.1002/admi.202100206
146.
Yoon
,
K.
,
Lee
,
S.
,
Oh
,
K.
, and
Kang
,
K.
,
2022
, “
Challenges and Strategies Towards Practically Feasible Solid‐State Lithium Metal Batteries
,”
Adv. Mater.
,
34
(
4
), p.
2104666
.10.1002/adma.202104666
147.
Kaiser
,
N.
,
Spannenberger
,
S.
,
Schmitt
,
M.
,
Cronau
,
M.
,
Kato
,
Y.
, and
Roling
,
B.
,
2018
, “
Ion Transport Limitations in All-Solid-State Lithium Battery Electrodes Containing a Sulfide-Based Electrolyte
,”
J. Power Sources
,
396
, pp.
175
181
.10.1016/j.jpowsour.2018.05.095
148.
Pervez
,
S. A.
,
Kim
,
G.
,
Vinayan
,
B. P.
,
Cambaz
,
M. A.
,
Kuenzel
,
M.
,
Hekmatfar
,
M.
,
Fichtner
,
M.
, and
Passerini
,
S.
,
2020
, “
Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers
,”
Small
,
16
(
14
), p.
2000279
.10.1002/smll.202000279
149.
Sastre
,
J.
,
Futscher
,
M. H.
,
Pompizi
,
L.
,
Aribia
,
A.
,
Priebe
,
A.
,
Overbeck
,
J.
,
Stiefel
,
M.
,
Tiwari
,
A. N.
, and
Romanyuk
,
Y. E.
,
2021
, “
Blocking Lithium Dendrite Growth in Solid-State Batteries With an Ultrathin Amorphous Li-La-Zr-O Solid Electrolyte
,”
Commun. Mater.
,
2
(
1
), pp.
1
10
.10.1038/s43246-021-00177-4
150.
Heubner
,
C.
,
Maletti
,
S.
,
Auer
,
H.
,
Hüttl
,
J.
,
Voigt
,
K.
,
Lohrberg
,
O.
,
Nikolowski
,
K.
,
Partsch
,
M.
, and
Michaelis
,
A.
,
2021
, “
From Lithium‐Metal Toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges
,”
Adv. Funct. Mater.
,
31
(
51
), p.
2106608
.10.1002/adfm.202106608
151.
Davis
,
A. L.
,
Kazyak
,
E.
,
Liao
,
D. W.
,
Wood
,
K. N.
, and
Dasgupta
,
N. P.
,
2021
, “
Operando Analysis of Interphase Dynamics in Anode-Free Solid-State Batteries With Sulfide Electrolytes
,”
J. Electrochem. Soc.
,
168
(
7
), p.
070557
.10.1149/1945-7111/ac163d
152.
Huang
,
W. ‐Z.
,
Zhao
,
C. ‐Z.
,
Wu
,
P.
,
Yuan
,
H.
,
Feng
,
W. ‐E.
,
Liu
,
Z. ‐Y.
,
Lu
,
Y.
,
Sun
,
S.
,
Fu
,
Z. ‐H.
,
Hu
,
J. ‐K.
,
Yang
,
S. ‐J.
,
Huang
,
J. ‐Q.
, and
Zhang
,
Q.
,
2022
, “
Anode‐Free Solid‐State Lithium Batteries: A Review
,”
Adv. Energy Mater.
,
12
(
26
), p.
2201044
.10.1002/aenm.202201044
153.
Tong
,
Z.
,
Bazri
,
B.
,
Hu
,
S.-F.
, and
Liu
,
R.-S.
,
2021
, “
Interfacial Chemistry in Anode-Free Batteries: Challenges and Strategies
,”
J. Mater. Chem. A
,
9
(
12
), pp.
7396
7406
.10.1039/D1TA00419K
154.
Geng
,
F.
,
Yang
,
Q.
,
Li
,
C.
,
Shen
,
M.
,
Chen
,
Q.
, and
Hu
,
B.
,
2021
, “
Mapping the Distribution and the Microstructural Dimensions of Metallic Lithium Deposits in an Anode-Free Battery by In Situ EPR Imaging
,”
Chem. Mater.
,
33
(
21
), pp.
8223
8234
.10.1021/acs.chemmater.1c02323
155.
Kwon
,
H.
,
Lee
,
J.-H.
,
Roh
,
Y.
,
Baek
,
J.
,
Shin
,
D. J.
,
Yoon
,
J. K.
,
Ha
,
H. J.
,
Kim
,
J. Y.
, and
Kim
,
H.-T.
,
2021
, “
An Electron-Deficient Carbon Current Collector for Anode-Free Li-Metal Batteries
,”
Nat. Commun.
,
12
(
1
), pp.
1
13
.10.1038/s41467-021-25848-1
156.
Fuchs
,
T.
,
Becker
,
J.
,
Haslam
,
C. G.
,
Lerch
,
C.
,
Sakamoto
,
J.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2023
, “
Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu| LLZO Interface
,”
Adv. Energy Mater.
,
13
(
1
), p.
2203174
.10.1002/aenm.202203174
157.
Wang
,
Y.
,
Liu
,
Y.
,
Nguyen
,
M.
,
Cho
,
J.
,
Katyal
,
N.
,
Vishnugopi
,
B. S.
,
Hao
,
H.
,
Fang
,
R.
,
Wu
,
N.
,
Liu
,
P.
,
Mukherjee
,
P. P.
,
Nanda
,
J.
,
Henkelman
,
G.
,
Watt
,
J.
, and
Mitlin
,
D.
,
2023
, “
Stable Anode‐Free All‐Solid‐State Lithium Battery Through Tuned Metal Wetting on the Copper Current Collector
,”
Adv. Mater.
,
35
(
8
), p.
2206762
.10.1002/adma.202206762
158.
Guo
,
F.
,
Wu
,
C.
,
Chen
,
H.
,
Zhong
,
F.
,
Ai
,
X.
,
Yang
,
H.
, and
Qian
,
J.
,
2020
, “
Dendrite-Free Lithium Deposition by Coating a Lithiophilic Heterogeneous Metal Layer on Lithium Metal Anode
,”
Energy Storage Mater.
,
24
, pp.
635
643
.10.1016/j.ensm.2019.06.010
159.
Kim
,
S.
,
Jung
,
C.
,
Kim
,
H.
,
Thomas‐Alyea
,
K. E.
,
Yoon
,
G.
,
Kim
,
B.
,
Badding
,
M. E.
,
Song
,
Z.
,
Chang
,
J.
,
Kim
,
J.
,
Im
,
D.
, and
Kang
,
K.
,
2020
, “
The Role of Interlayer Chemistry in Li‐Metal Growth Through a Garnet‐Type Solid Electrolyte
,”
Adv. Energy Mater.
,
10
(
12
), p.
1903993
.10.1002/aenm.201903993
160.
Futscher
,
M. H.
,
Amelal
,
T.
,
Sastre
,
J.
,
Müller
,
A.
,
Patidar
,
J.
,
Aribia
,
A.
,
Thorwarth
,
K.
,
Siol
,
S.
, and
Romanyuk
,
Y. E.
,
2022
, “
Influence of Amorphous Carbon Interlayers on Nucleation and Early Growth of Lithium Metal at the Current Collector-Solid Electrolyte Interface
,”
J. Mater. Chem. A
,
10
(
29
), pp.
15535
15542
.10.1039/D2TA02843C
161.
Lewis
,
J. A.
,
Lee
,
C.
,
Liu
,
Y.
,
Han
,
S. Y.
,
Prakash
,
D.
,
Klein
,
E. J.
,
Lee
,
H.-W.
, and
McDowell
,
M. T.
,
2022
, “
Role of Areal Capacity in Determining Short Circuiting of Sulfide-Based Solid-State Batteries
,”
ACS Appl. Mater. Interfaces
,
14
(
3
), pp.
4051
4060
.10.1021/acsami.1c20139
162.
Lu
,
Y.
,
Zhao
,
C.-Z.
,
Hu
,
J.-K.
,
Sun
,
S.
,
Yuan
,
H.
,
Fu
,
Z.-H.
,
Chen
,
X.
,
Huang
,
J.-Q.
,
Ouyang
,
M.
, and
Zhang
,
Q.
,
2022
, “
The Void Formation Behaviors in Working Solid-State Li Metal Batteries
,”
Sci. Adv.
,
8
(
45
), p.
eadd0510
.10.1126/sciadv.add0510
163.
Vishnugopi
,
B. S.
,
Naik
,
K. G.
,
Kawakami
,
H.
,
Ikeda
,
N.
,
Mizuno
,
Y.
,
Iwamura
,
R.
,
Kotaka
,
T.
,
Aotani
,
K.
,
Tabuchi
,
Y.
, and
Mukherjee
,
P. P.
,
2023
, “
Asymmetric Contact Loss Dynamics During Plating and Stripping in Solid‐State Batteries
,”
Adv. Energy Mater.
,
13
(
8
), p.
2203671
.10.1002/aenm.202203671
164.
Singh
,
D. K.
,
Henss
,
A.
,
Mogwitz
,
B.
,
Gautam
,
A.
,
Horn
,
J.
,
Krauskopf
,
T.
,
Burkhardt
,
S.
,
Sann
,
J.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2022
, “
Li6PS5Cl Microstructure and Influence on Dendrite Growth in Solid-State Batteries With Lithium Metal Anode
,”
Cell Rep. Phys. Sci.
,
3
(
9
), p.
101043
.10.1016/j.xcrp.2022.101043
165.
Fuchs
,
T.
,
Haslam
,
C. G.
,
Moy
,
A. C.
,
Lerch
,
C.
,
Krauskopf
,
T.
,
Sakamoto
,
J.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2022
, “
Increasing the Pressure‐Free Stripping Capacity of the Lithium Metal Anode in Solid‐State‐Batteries by Carbon Nanotubes
,”
Adv. Energy Mater.
,
12
(
26
), p.
2201125
.10.1002/aenm.202201125
166.
Li
,
F.
,
Cheng
,
X.
,
Lu
,
L.-L.
,
Yin
,
Y.-C.
,
Luo
,
J.-D.
,
Lu
,
G.
,
Meng
,
Y.-F.
,
Mo
,
H.
,
Tian
,
T.
,
Yang
,
J.-T.
,
Wen
,
W.
,
Liu
,
Z.-P.
,
Zhang
,
G.
,
Shang
,
C.
, and
Yao
,
H.-B.
,
2022
, “
Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes
,”
Nano Lett.
,
22
(
6
), pp.
2461
2469
.10.1021/acs.nanolett.2c00187
167.
Dixit
,
M. B.
,
Verma
,
A.
,
Zaman
,
W.
,
Zhong
,
X.
,
Kenesei
,
P.
,
Park
,
J. S.
,
Almer
,
J.
,
Mukherjee
,
P. P.
, and
Hatzell
,
K. B.
,
2020
, “
Synchrotron Imaging of Pore Formation in Li Metal Solid-State Batteries Aided by Machine Learning
,”
ACS Appl. Energy Mater.
,
3
(
10
), pp.
9534
9542
.10.1021/acsaem.0c02053
168.
Satpati
,
A.
,
Kandregula
,
G. R.
, and
Ramanujam
,
K.
,
2022
, “
Machine Learning Enabled High-Throughput Screening of Inorganic Solid Electrolytes for Regulating Dendritic Growth in Lithium Metal Anodes
,”
New J. Chem.
,
46
(
29
), pp.
14227
14238
.10.1039/D2NJ01827F
169.
Ahmad
,
Z.
,
Xie
,
T.
,
Maheshwari
,
C.
,
Grossman
,
J. C.
, and
Viswanathan
,
V.
,
2018
, “
Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
,”
ACS Central Sci.
,
4
(
8
), pp.
996
1006
.10.1021/acscentsci.8b00229
170.
Wang
,
Y.
,
Ye
,
L.
,
Chen
,
X.
, and
Li
,
X.
,
2022
, “
A Two-Parameter Space to Tune Solid Electrolytes for Lithium Dendrite Constriction
,”
JACS Au
,
2
(
4
), pp.
886
897
.10.1021/jacsau.2c00009
171.
Zhu
,
Y.
,
He
,
X.
, and
Mo
,
Y.
,
2016
, “
First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte–Electrode Interfaces in All-Solid-State Li-Ion Batteries
,”
J. Mater. Chem. A
,
4
(
9
), pp.
3253
3266
.10.1039/C5TA08574H
172.
Sumita
,
M.
,
Tanaka
,
Y.
,
Ikeda
,
M.
, and
Ohno
,
T.
,
2015
, “
Theoretically Designed Li3PO4 (100)/LiFePO4 (010) Coherent Electrolyte/Cathode Interface for All Solid-State Li Ion Secondary Batteries
,”
J. Phys. Chem. C
,
119
(
1
), pp.
14
22
.10.1021/jp5060342
173.
Ohta
,
N.
,
Takada
,
K.
,
Sakaguchi
,
I.
,
Zhang
,
L.
,
Ma
,
R.
,
Fukuda
,
K.
,
Osada
,
M.
, and
Sasaki
,
T.
,
2007
, “
LiNbO3-Coated LiCoO2 as Cathode Material for All Solid-State Lithium Secondary Batteries
,”
Electrochem. Commun.
,
9
(
7
), pp.
1486
1490
.10.1016/j.elecom.2007.02.008
174.
Sakuda
,
A.
,
Kitaura
,
H.
,
Hayashi
,
A.
,
Tadanaga
,
K.
, and
Tatsumisago
,
M.
,
2008
, “
Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated With Li2O–SiO2 Glasses
,”
Electrochem. Solid-State Lett.
,
11
(
1
), p.
A1
.10.1149/1.2795837
175.
Ohta
,
N.
,
Takada
,
K.
,
Zhang
,
L.
,
Ma
,
R.
,
Osada
,
M.
, and
Sasaki
,
T.
,
2006
, “
Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification
,”
Adv. Mater.
,
18
(
17
), pp.
2226
2229
.10.1002/adma.200502604
176.
Fitzhugh
,
W.
,
Ye
,
L.
, and
Li
,
X.
,
2019
, “
The Effects of Mechanical Constriction on the Operation of Sulfide Based Solid-State Batteries
,”
J. Mater. Chem. A
,
7
(
41
), pp.
23604
23627
.10.1039/C9TA05248H
177.
Bielefeld
,
A.
,
Weber
,
D. A.
, and
Janek
,
J. R.
,
2019
, “
Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries
,”
J. Phys. Chem. C
,
123
(
3
), pp.
1626
1634
.10.1021/acs.jpcc.8b11043
178.
Sakuda
,
A.
,
Hayashi
,
A.
, and
Tatsumisago
,
M.
,
2013
, “
Sulfide Solid Electrolyte With Favorable Mechanical Property for All-Solid-State Lithium Battery
,”
Sci. Rep.
,
3
(
1
), pp.
1
5
.10.1038/srep02261
179.
Ke
,
X.
,
Wang
,
Y.
,
Ren
,
G.
, and
Yuan
,
C.
,
2020
, “
Towards Rational Mechanical Design of Inorganic Solid Electrolytes for All-Solid-State Lithium Ion Batteries
,”
Energy Storage Mater.
,
26
, pp.
313
324
.10.1016/j.ensm.2019.08.029
180.
Zhang
,
X.-D.
,
Yue
,
F.-S.
,
Liang
,
J.-Y.
,
Shi
,
J.-L.
,
Li
,
H.
, and
Guo
,
Y.-G.
,
2020
, “
Structure Design of Cathode Electrodes for Solid‐State Batteries: Challenges and Progress
,”
Small Struct.
,
1
(
3
), p.
2000042
.10.1002/sstr.202000042
181.
Naik
,
K. G.
,
Vishnugopi
,
B. S.
, and
Mukherjee
,
P. P.
,
2023
, “
Heterogeneities Affect Solid-State Battery Cathode Dynamics
,”
Energy Storage Mater.
,
55
, pp.
312
321
.10.1016/j.ensm.2022.11.055
182.
Xu
,
L.
,
Tang
,
S.
,
Cheng
,
Y.
,
Wang
,
K.
,
Liang
,
J.
,
Liu
,
C.
,
Cao
,
Y.-C.
,
Wei
,
F.
, and
Mai
,
L.
,
2018
, “
Interfaces in Solid-State Lithium Batteries
,”
Joule
,
2
(
10
), pp.
1991
2015
.10.1016/j.joule.2018.07.009
183.
Luntz
,
A. C.
,
Voss
,
J.
, and
Reuter
,
K.
,
2015
, “
Interfacial Challenges in Solid-State Li Ion Batteries
,”
J. Phys. Chem. Lett.
, 6(22),
pp.
4599
4604
.10.1021/acs.jpclett.5b02352
184.
Minnmann
,
P.
,
Quillman
,
L.
,
Burkhardt
,
S.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2021
, “
Editors' Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries
,”
J. Electrochem. Soc.
,
168
(
4
), p.
040537
.10.1149/1945-7111/abf8d7
185.
Banerjee
,
A.
,
Wang
,
X.
,
Fang
,
C.
,
Wu
,
E. A.
, and
Meng
,
Y. S.
,
2020
, “
Interfaces and Interphases in All-Solid-State Batteries With Inorganic Solid Electrolytes
,”
Chem. Rev.
,
120
(
14
), pp.
6878
6933
.10.1021/acs.chemrev.0c00101
186.
Koerver
,
R.
,
Aygün
,
I.
,
Leichtweiß
,
T.
,
Dietrich
,
C.
,
Zhang
,
W.
,
Binder
,
J. O.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes
,”
Chem. Mater.
,
29
(
13
), pp.
5574
5582
.10.1021/acs.chemmater.7b00931
187.
Vardar
,
G.
,
Bowman
,
W. J.
,
Lu
,
Q.
,
Wang
,
J.
,
Chater
,
R. J.
,
Aguadero
,
A.
,
Seibert
,
R.
,
Terry
,
J.
,
Hunt
,
A.
,
Waluyo
,
I.
,
Fong
,
D. D.
,
Jarry
,
A.
,
Crumlin
,
E. J.
,
Hellstrom
,
S. L.
,
Chiang
,
Y.-M.
, and
Yildiz
,
B.
,
2018
, “
Structure, Chemistry, and Charge Transfer Resistance of the Interface Between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode
,”
Chem. Mater.
,
30
(
18
), pp.
6259
6276
.10.1021/acs.chemmater.8b01713
188.
Ohta
,
S.
,
Kobayashi
,
T.
,
Seki
,
J.
, and
Asaoka
,
T.
,
2012
, “
Electrochemical Performance of an All-Solid-State Lithium Ion Battery With Garnet-Type Oxide Electrolyte
,”
J. Power Sources
,
202
, pp.
332
335
.10.1016/j.jpowsour.2011.10.064
189.
Shi
,
T.
,
Zhang
,
Y.-Q.
,
Tu
,
Q.
,
Wang
,
Y.
,
Scott
,
M.
, and
Ceder
,
G.
,
2020
, “
Characterization of Mechanical Degradation in an All-Solid-State Battery Cathode
,”
J. Mater. Chem. A
,
8
(
34
), pp.
17399
17404
.10.1039/D0TA06985J
190.
Zhang
,
W.
,
Schröder
,
D.
,
Arlt
,
T.
,
Manke
,
I.
,
Koerver
,
R.
,
Pinedo
,
R.
,
Weber
,
D. A.
,
Sann
,
J.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
(Electro) Chemical Expansion During Cycling: Monitoring the Pressure Changes in Operating Solid-State Lithium Batteries
,”
J. Mater. Chem. A
,
5
(
20
), pp.
9929
9936
.10.1039/C7TA02730C
191.
Zhao
,
Y.
,
Stein
,
P.
,
Bai
,
Y.
,
Al-Siraj
,
M.
,
Yang
,
Y.
, and
Xu
,
B.-X.
,
2019
, “
A Review on Modeling of Electro-Chemo-Mechanics in Lithium-Ion Batteries
,”
J. Power Sources
,
413
, pp.
259
283
.10.1016/j.jpowsour.2018.12.011
192.
Jung
,
S.-K.
,
Gwon
,
H.
,
Lee
,
S.-S.
,
Kim
,
H.
,
Lee
,
J. C.
,
Chung
,
J. G.
,
Park
,
S. Y.
,
Aihara
,
Y.
, and
Im
,
D.
,
2019
, “
Understanding the Effects of Chemical Reactions at the Cathode–Electrolyte Interface in Sulfide Based All-Solid-State Batteries
,”
J. Mater. Chem. A
,
7
(
40
), pp.
22967
22976
.10.1039/C9TA08517C
193.
Chen
,
J.
,
Liu
,
J.
,
Qi
,
Y.
,
Sun
,
T.
, and
Li
,
X.
,
2013
, “
Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1502
A1509
.10.1149/2.088309jes
194.
Zhang
,
W.
,
Richter
,
F. H.
,
Culver
,
S. P.
,
Leichtweiss
,
T.
,
Lozano
,
J. G.
,
Dietrich
,
C.
,
Bruce
,
P. G.
,
Zeier
,
W. G.
, and
Janek
,
J. R.
,
2018
, “
Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery
,”
ACS Appl. Mater. Interfaces
,
10
(
26
), pp.
22226
22236
.10.1021/acsami.8b05132
195.
Park
,
K.
,
Yu
,
B.-C.
,
Jung
,
J.-W.
,
Li
,
Y.
,
Zhou
,
W.
,
Gao
,
H.
,
Son
,
S.
, and
Goodenough
,
J. B.
,
2016
, “
Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface Between LiCoO2 and Garnet-Li7La3Zr2O12
,”
Chem. Mater.
,
28
(
21
), pp.
8051
8059
.10.1021/acs.chemmater.6b03870
196.
Ohno
,
S.
,
Koerver
,
R.
,
Dewald
,
G.
,
Rosenbach
,
C.
,
Titscher
,
P.
,
Steckermeier
,
D.
,
Kwade
,
A.
,
Janek
,
J. R.
, and
Zeier
,
W. G.
,
2019
, “
Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Li–S Batteries
,”
Chem. Mater.
,
31
(
8
), pp.
2930
2940
.10.1021/acs.chemmater.9b00282
197.
Zhao
,
Y.
,
Shi
,
D.
,
Lu
,
B.
, and
Zhang
,
J.
,
2022
, “
Stress-Induced Uphill Diffusion With Interfacial Contact Loss in Solid-State Electrodes
,”
Acta Mech. Solida Sin.
,
35
(
1
), pp.
113
128
.10.1007/s10338-021-00274-4
198.
Zhang
,
S.
,
2017
, “
Chemomechanical Modeling of Lithiation-Induced Failure in High-Volume-Change Electrode Materials for Lithium Ion Batteries
,”
NPJ Comput. Mater.
,
3
(
1
), pp.
1
11
.10.1038/s41524-017-0009-z
199.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2017
, “
Lithium Dendrite Growth Mechanisms in Polymer Electrolytes and Prevention Strategies
,”
Phys. Chem. Chem. Phys.
,
19
(
31
), pp.
20493
20505
.10.1039/C7CP03304D
200.
Ahmad
,
Z.
, and
Viswanathan
,
V.
,
2017
, “
Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes
,”
Phys. Rev. Lett.
,
119
(
5
), p.
056003
.10.1103/PhysRevLett.119.056003
201.
Barai
,
P.
,
Huang
,
B.
,
Dillon
,
S. J.
, and
Mukherjee
,
P. P.
,
2016
, “
Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes
,”
J. Electrochem. Soc.
,
163
(
14
), pp.
A3022
A3035
.10.1149/2.0801614jes
202.
Barai
,
P.
, and
Mukherjee
,
P. P.
,
2013
, “
Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
A955
A967
.10.1149/2.132306jes
203.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Insertion in Storage Particles Using a Fracture Phase Field Approach
,”
J. Mech. Phys. Solids
,
92
, pp.
313
344
.10.1016/j.jmps.2016.04.004
204.
Ruess
,
R.
,
Schweidler
,
S.
,
Hemmelmann
,
H.
,
Conforto
,
G.
,
Bielefeld
,
A.
,
Weber
,
D. A.
,
Sann
,
J.
,
Elm
,
M. T.
, and
Janek
,
J.
,
2020
, “
Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries With Liquid or Solid Electrolyte
,”
J. Electrochem. Soc.
,
167
(
10
), p.
100532
.10.1149/1945-7111/ab9a2c
205.
Liu
,
B.
, and
Xu
,
J.
,
2020
, “
Cracks of Silicon Nanoparticles in Anodes: Mechanics–Electrochemical-Coupled Modeling Framework Based on the Phase-Field Method
,”
ACS Appl. Energy Mater.
,
3
(
11
), pp.
10931
10939
.10.1021/acsaem.0c01916
206.
Winter
,
M.
, and
Besenhard
,
J. O.
,
1999
, “
Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites
,”
Electrochim. Acta
,
45
(
1–2
), pp.
31
50
.10.1016/S0013-4686(99)00191-7
207.
Strauss
,
F.
,
de Biasi
,
L.
,
Kim
,
A.-Y.
,
Hertle
,
J.
,
Schweidler
,
S.
,
Janek
,
J. R.
,
Hartmann
,
P.
, and
Brezesinski
,
T.
,
2020
, “
Rational Design of Quasi-Zero-Strain NCM Cathode Materials for Minimizing Volume Change Effects in All-Solid-State Batteries
,”
ACS Mater. Lett.
,
2
(
1
), pp.
84
88
.10.1021/acsmaterialslett.9b00441
208.
Sun
,
H. H.
,
Ryu
,
H.-H.
,
Kim
,
U.-H.
,
Weeks
,
J. A.
,
Heller
,
A.
,
Sun
,
Y.-K.
, and
Mullins
,
C. B.
,
2020
, “
Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes
,”
ACS Energy Lett.
,
5
(
4
), pp.
1136
1146
.10.1021/acsenergylett.0c00191
209.
Wang
,
C.
,
Yu
,
R.
,
Hwang
,
S.
,
Liang
,
J.
,
Li
,
X.
,
Zhao
,
C.
,
Sun
,
Y.
,
Wang
,
J.
,
Holmes
,
N.
,
Li
,
R.
,
Huang
,
H.
,
Zhao
,
S.
,
Zhang
,
L.
,
Lu
,
S.
,
Su
,
D.
, and
Sun
,
X.
,
2020
, “
Single Crystal Cathodes Enabling High-Performance All-Solid-State Lithium-Ion Batteries
,”
Energy Storage Mater.
,
30
, pp.
98
103
.10.1016/j.ensm.2020.05.007
210.
Cha
,
H.
,
Kim
,
J.
,
Lee
,
H.
,
Kim
,
N.
,
Hwang
,
J.
,
Sung
,
J.
,
Yoon
,
M.
,
Kim
,
K.
, and
Cho
,
J.
,
2020
, “
Boosting Reaction Homogeneity in High‐Energy Lithium‐Ion Battery Cathode Materials
,”
Adv. Mater.
,
32
(
39
), p.
2003040
.10.1002/adma.202003040
211.
Zhao
,
M.
,
Li
,
B.-Q.
,
Zhang
,
X.-Q.
,
Huang
,
J.-Q.
, and
Zhang
,
Q.
,
2020
, “
A Perspective Toward Practical Lithium–Sulfur Batteries
,”
ACS Central Sci.
,
6
(
7
), pp.
1095
1104
.10.1021/acscentsci.0c00449
212.
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2017
, “
Precipitation–Microstructure Interactions in the Li-Sulfur Battery Electrode
,”
J. Phys. Chem. C
,
121
(
47
), pp.
26256
26264
.10.1021/acs.jpcc.7b09997
213.
Fang
,
R.
,
Zhao
,
S.
,
Sun
,
Z.
,
Wang
,
D.-W.
,
Cheng
,
H.-M.
, and
Li
,
F.
,
2017
, “
More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects
,”
Adv. Mater.
,
29
(
48
), p.
1606823
.10.1002/adma.201606823
214.
Mistry
,
A. N.
, and
Mukherjee
,
P. P.
,
2018
, “
Electrolyte Transport Evolution Dynamics in Lithium–Sulfur Batteries
,”
J. Phys. Chem. C
,
122
(
32
), pp.
18329
18335
.10.1021/acs.jpcc.8b05442
215.
Rana
,
M.
,
Ahad
,
S. A.
,
Li
,
M.
,
Luo
,
B.
,
Wang
,
L.
,
Gentle
,
I.
, and
Knibbe
,
R.
,
2019
, “
Review on Areal Capacities and Long-Term Cycling Performances of Lithium Sulfur Battery at High Sulfur Loading
,”
Energy Storage Mater.
,
18
, pp.
289
310
.10.1016/j.ensm.2018.12.024
216.
Xu
,
R-C.
,
Xia
,
X-h.
,
Li
,
S-h.
,
Zhang
,
S-Z.
,
Wang
,
X-L.
, and
Tu
,
J-P.
,
2017
, “
All-Solid-State Lithium–Sulfur Batteries Based on a Newly Designed Li7P2.9Mn0.1S10.7I0.3 Superionic Conductor
,”
J. Mater. Chem. A
,
5
(
13
), pp.
6310
6317
.10.1039/C7TA01147D
217.
Fu
,
K. (.
,
Gong
,
Y.
,
Hitz
,
G. T.
,
McOwen
,
D. W.
,
Li
,
Y.
,
Xu
,
S.
,
Wen
,
Y.
,
Zhang
,
L.
,
Wang
,
C.
,
Pastel
,
G.
,
Dai
,
J.
,
Liu
,
B.
,
Xie
,
H.
,
Yao
,
Y.
,
Wachsman
,
E. D.
, and
Hu
,
L.
,
2017
, “
Three-Dimensional Bilayer Garnet Solid Electrolyte Based High Energy Density Lithium Metal–Sulfur Batteries
,”
Energy Environ. Sci.
,
10
(
7
), pp.
1568
1575
.10.1039/C7EE01004D
218.
Tao
,
X.
,
Liu
,
Y.
,
Liu
,
W.
,
Zhou
,
G.
,
Zhao
,
J.
,
Lin
,
D.
,
Zu
,
C.
,
Sheng
,
O.
,
Zhang
,
W.
,
Lee
,
H.-W.
, and
Cui
,
Y.
,
2017
, “
Solid-State Lithium–Sulfur Batteries Operated at 37 C With Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer
,”
Nano Lett.
,
17
(
5
), pp.
2967
2972
.10.1021/acs.nanolett.7b00221
219.
Yan
,
H.
,
Wang
,
H.
,
Wang
,
D.
,
Li
,
X.
,
Gong
,
Z.
, and
Yang
,
Y.
,
2019
, “
In Situ Generated Li2S–C Nanocomposite for High-Capacity and Long-Life All-Solid-State Lithium Sulfur Batteries With Ultrahigh Areal Mass Loading
,”
Nano Lett.
,
19
(
5
), pp.
3280
3287
.10.1021/acs.nanolett.9b00882
220.
Wei Seh
,
Z.
,
Li
,
W.
,
Cha
,
J. J.
,
Zheng
,
G.
,
Yang
,
Y.
,
McDowell
,
M. T.
,
Hsu
,
P.-C.
, and
Cui
,
Y.
,
2013
, “
Sulphur–TiO2 Yolk–Shell Nanoarchitecture With Internal Void Space for Long-Cycle Lithium–Sulphur Batteries
,”
Nat. Commun.
,
4
(
1
), pp.
1
6
.10.1038/ncomms2327
221.
Zhang
,
Q.
,
Huang
,
N.
,
Huang
,
Z.
,
Cai
,
L.
,
Wu
,
J.
, and
Yao
,
X.
,
2020
, “
CNTs@ S Composite as Cathode for All-Solid-State Lithium-Sulfur Batteries With Ultralong Cycle Life
,”
J. Energy Chem.
,
40
, pp.
151
155
.10.1016/j.jechem.2019.03.006
222.
Phuc
,
N. H.
,
Gamo
,
H.
,
Hikima
,
K.
,
Muto
,
H.
, and
Matsuda
,
A.
,
2022
, “
Novel (100-xy) Li3PS4-xLiBF4-yLiCl Amorphous Solid Electrolytes for All-Solid-State Li Ion Battery
,”
J. Non-Cryst. Solids
,
593
, p.
121768
.10.1016/j.jnoncrysol.2022.121768
223.
Chen
,
Y.
,
Wang
,
Z.
,
Li
,
X.
,
Yao
,
X.
,
Wang
,
C.
,
Li
,
Y.
,
Xue
,
W.
,
Yu
,
D.
,
Kim
,
S. Y.
,
Yang
,
F.
,
Kushima
,
A.
,
Zhang
,
G.
,
Huang
,
H.
,
Wu
,
N.
,
Mai
,
Y.-W.
,
Goodenough
,
J. B.
, and
Li
,
J.
,
2020
, “
Li Metal Deposition and Stripping in a Solid-State Battery Via Coble Creep
,”
Nature
,
578
(
7794
), pp.
251
255
.10.1038/s41586-020-1972-y
224.
LePage
,
W. S.
,
Chen
,
Y.
,
Kazyak
,
E.
,
Chen
,
K.-H.
,
Sanchez
,
A. J.
,
Poli
,
A.
,
Arruda
,
E. M.
,
Thouless
,
M.
, and
Dasgupta
,
N. P.
,
2019
, “
Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
A89
A97
.10.1149/2.0221902jes
225.
Wang
,
C.-Y.
,
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X.-G.
, and
Leng
,
Y.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
.10.1038/nature16502
226.
Yang
,
X.-G.
,
Zhang
,
G.
, and
Wang
,
C.-Y.
,
2016
, “
Computational Design and Refinement of Self-Heating Lithium Ion Batteries
,”
J. Power Sources
,
328
, pp.
203
211
.10.1016/j.jpowsour.2016.08.028
227.
Yong-Gun
,
L.
,
Satoshi
,
F.
,
Changhoon
,
J.
,
Suzuki
,
N.
,
Nobuyoshi
,
Y.
,
Ryo
,
O.
,
Dong-Su
,
K.
,
Toshinori
,
S.
,
Saebom
,
R.
, and
Ku
,
J. H.
,
2020
, “
High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver–Carbon Composite Anodes
,”
Nat. Energy
,
5
(
4
), pp.
299
308
.10.1038/s41560-020-0575-z
228.
Yu
,
C.
,
Ganapathy
,
S.
,
Van Eck
,
E. R.
,
Wang
,
H.
,
Basak
,
S.
,
Li
,
Z.
, and
Wagemaker
,
M.
,
2017
, “
Accessing the Bottleneck in All-Solid State Batteries, Lithium-Ion Transport Over the Solid-Electrolyte-Electrode Interface
,”
Nat. Commun.
,
8
(
1
), pp.
1
9
.10.1038/s41467-017-01187-y
229.
Shi
,
T.
,
Tu
,
Q.
,
Tian
,
Y.
,
Xiao
,
Y.
,
Miara
,
L. J.
,
Kononova
,
O.
, and
Ceder
,
G.
,
2020
, “
High Active Material Loading in All‐Solid‐State Battery Electrode Via Particle Size Optimization
,”
Adv. Energy Mater.
,
10
(
1
), p.
1902881
.10.1002/aenm.201902881
230.
Bielefeld
,
A.
,
Weber
,
D. A.
, and
Janek
,
J. R.
,
2020
, “
Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries
,”
ACS Appl. Mater. Interfaces
,
12
(
11
), pp.
12821
12833
.10.1021/acsami.9b22788
231.
Randau
,
S.
,
Walther
,
F.
,
Neumann
,
A.
,
Schneider
,
Y.
,
Negi
,
R. S.
,
Mogwitz
,
B.
,
Sann
,
J.
,
Becker-Steinberger
,
K.
,
Danner
,
T.
,
Hein
,
S.
,
Latz
,
A.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2021
, “
On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries
,”
Chem. Mater.
,
33
(
4
), pp.
1380
1393
.10.1021/acs.chemmater.0c04454
232.
Rosero-Navarro
,
N. C.
,
Kinoshita
,
T.
,
Miura
,
A.
,
Higuchi
,
M.
, and
Tadanaga
,
K.
,
2017
, “
Effect of the Binder Content on the Electrochemical Performance of Composite Cathode Using Li6PS5Cl Precursor Solution in an All-Solid-State Lithium Battery
,”
Ionics
,
23
(
6
), pp.
1619
1624
.10.1007/s11581-017-2106-x
233.
Zhao
,
X.
,
Tian
,
Y.
,
Lun
,
Z.
,
Cai
,
Z.
,
Chen
,
T.
,
Ouyang
,
B.
, and
Ceder
,
G.
,
2022
, “
Design Principles for Zero-Strain Li-Ion Cathodes
,”
Joule
,
6
(
7
), pp.
1654
1671
.10.1016/j.joule.2022.05.018
234.
Qian
,
G.
,
Zhang
,
Y.
,
Li
,
L.
,
Zhang
,
R.
,
Xu
,
J.
,
Cheng
,
Z.
,
Xie
,
S.
,
Wang
,
H.
,
Rao
,
Q.
,
He
,
Y.
,
Shen
,
Y.
,
Chen
,
L.
,
Tang
,
M.
, and
Ma
,
Z.-F.
,
2020
, “
Single-Crystal Nickel-Rich Layered-Oxide Battery Cathode Materials: Synthesis, Electrochemistry, and Intra-Granular Fracture
,”
Energy Storage Mater.
,
27
, pp.
140
149
.10.1016/j.ensm.2020.01.027
235.
Kong
,
X.
,
Zhang
,
Y.
,
Peng
,
S.
,
Zeng
,
J.
, and
Zhao
,
J.
,
2020
, “
Superiority of Single-Crystal to Polycrystalline LiNixCoyMn1–x–yO2 Cathode Materials in Storage Behaviors for Lithium-Ion Batteries
,”
ACS Sustainable Chem. Eng.
,
8
(
39
), pp.
14938
14948
.10.1021/acssuschemeng.0c05011
236.
Zahiri
,
B.
,
Patra
,
A.
,
Kiggins
,
C.
,
Yong
,
A. X. B.
,
Ertekin
,
E.
,
Cook
,
J. B.
, and
Braun
,
P. V.
,
2021
, “
Revealing the Role of the Cathode–Electrolyte Interface on Solid-State Batteries
,”
Nat. Mater.
,
20
(
10
), pp.
1392
1400
.10.1038/s41563-021-01016-0
237.
Jung
,
S. H.
,
Kim
,
U. H.
,
Kim
,
J. H.
,
Jun
,
S.
,
Yoon
,
C. S.
,
Jung
,
Y. S.
, and
Sun
,
Y. K.
,
2020
, “
Ni‐Rich Layered Cathode Materials With Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries
,”
Adv. Energy Mater.
,
10
(
6
), p.
1903360
.10.1002/aenm.201903360
238.
Xu
,
X.
,
Huo
,
H.
,
Jian
,
J.
,
Wang
,
L.
,
Zhu
,
H.
,
Xu
,
S.
,
He
,
X.
,
Yin
,
G.
,
Du
,
C.
, and
Sun
,
X.
,
2019
, “
Radially Oriented Single‐Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium‐Ion Batteries
,”
Adv. Energy Mater.
,
9
(
15
), p.
1803963
.10.1002/aenm.201803963
You do not currently have access to this content.