Abstract

Soft materials, such as liquids, polymers, foams, gels, colloids, granular materials, and most soft biological materials, play an important role in our daily lives. From a mechanical viewpoint, soft materials can easily achieve large deformations due to their low elastic moduli; meanwhile, surface instabilities, including wrinkles, creases, folds, and ridges, among others, are often observed. In particular, soft dielectrics subject to electrical stimuli can achieve significantly large deformations that are often accompanied by instabilities. While instabilities are often thought to cause failures in the engineering context and carry a negative connotation, they can also be harnessed for various applications such as surface patterning, giant actuation strain, and energy harvesting. In the biological world, instability and bifurcation phenomena often precede important events such as endocytosis, and cell fusion, among others. Stability and bifurcation analysis (especially for soft materials) is challenging and often present a formidable barrier to entry in this important field. A multidisciplinary audience may lack the background in one or more areas that are needed to carry out the requisite modeling or even understand papers in the literature. Furthermore, combining electrostatics together with large deformations brings its own challenges. In this article, we provide a tutorial on the basics of stability and bifurcation analysis in the context of soft electromechanical materials. The aim of the article is to use simple examples and “gently” lead a reader, unfamiliar with either stability analysis or electrostatics of deformable media, to develop the ability to understand the pertinent literature that already exists and position them to embark on state-of-the-art research on this topic.

References

1.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
123
(
8
), pp.
1930
1935
.10.1002/ange.201006464
2.
Yang
,
D.
,
Mosadegh
,
B.
,
Ainla
,
A.
,
Lee
,
B.
,
Khashai
,
F.
,
Suo
,
Z.
,
Bertoldi
,
K.
, and
Whitesides
,
G. M.
,
2015
, “
Buckling of Elastomeric Beams Enables Actuation of Soft Machines
,”
Adv. Mater.
,
27
(
41
), pp.
6323
6327
.10.1002/adma.201503188
3.
Rus
,
D.
, and
Tolley
,
M. T.
, May
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.10.1038/nature14543
4.
Bauer
,
S.
,
Bauer-Gogonea
,
S.
,
Graz
,
I.
,
Kaltenbrunner
,
M.
,
Keplinger
,
C.
, and
Schwödiauer
,
R.
,
2014
, “
25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters
,”
Adv. Mater.
,
26
(
1
), pp.
149
162
.10.1002/adma.201303349
5.
Pelrine
,
R.
,
Kornbluh
,
R. D.
,
Eckerle
,
J.
,
Jeuck
,
P.
,
Oh
,
S.
,
Pei
,
Q.
, and
Stanford
,
S.
,
2001
, “
Dielectric Elastomers: Generator Mode Fundamentals and Applications
,” SPIE Paper No.
4329
.https://imechanica.org/files/Dielectric%20Elastomers%20-%20Generator%20Mode%20Fundamentals%20%26%20Applications.pdf
6.
Koh
,
S. J. A.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
94
(
26
), p.
262902
.10.1063/1.3167773
7.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
33
41
.10.1109/TMECH.2010.2089635
8.
Invernizzi
,
F.
,
Dulio
,
S.
,
Patrini
,
M.
,
Guizzetti
,
G.
, and
Mustarelli
,
P.
,
2016
, “
Energy Harvesting From Human Motion: Materials and Techniques
,”
Chem. Soc. Rev.
,
45
(
20
), pp.
5455
5473
.10.1039/C5CS00812C
9.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.10.1016/j.ijsolstr.2014.05.018
10.
Kofod
,
G.
,
Wirges
,
W.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2007
, “
Energy Minimization for Self-Organized Structure Formation and Actuation
,”
Appl. Phys. Lett.
,
90
(
8
), p.
081916
.10.1063/1.2695785
11.
Shankar
,
R.
,
Ghosh
,
T. K.
, and
Spontak
,
R. J.
,
2007
, “
Dielectric Elastomers as Next-Generation Polymeric Actuators
,”
Soft Matter
,
3
(
9
), pp.
1116
1129
.10.1039/b705737g
12.
Carpi
,
F.
,
Bauer
,
S.
, and
Rossi
,
D. D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.10.1126/science.1194773
13.
Keplinger
,
C.
,
Kaltenbrunner
,
M.
,
Arnold
,
N.
, and
Bauer
,
S.
,
2010
, “
Röntgen's Electrode-Free Elastomer Actuators Without Electromechanical Pull-in Instability
,”
Proc. Natl. Acad. Sci.
,
107
(
10
), pp.
4505
4510
.10.1073/pnas.0913461107
14.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.10.1002/marc.200900425
15.
Shao
,
H.
,
Wei
,
S.
,
Jiang
,
X.
,
Holmes
,
D. P.
, and
Ghosh
,
T. K.
,
2018
, “
Bioinspired Electrically Activated Soft Bistable Actuators
,”
Adv. Funct. Mater.
,
28
(
35
), p.
1802999
.10.1002/adfm.201802999
16.
Banet
,
P.
,
Zeggai
,
N.
,
Chavanne
,
J.
,
Nguyen
,
G. T. M.
,
Chikh
,
L.
,
Plesse
,
C.
,
Almanza
,
M.
,
Martinez
,
T.
,
Civet
,
Y.
,
Perriard
,
Y.
, and
Fichet
,
O.
,
2021
, “
Evaluation of Dielectric Elastomers to Develop Materials Suitable for Actuation
,”
Soft Matter
,
17
(
48
), pp.
10786
10805
.10.1039/D1SM00621E
17.
Pu
,
J.
,
Meng
,
Y.
,
Xie
,
Z.
,
Peng
,
Z.
,
Wu
,
J.
,
Shi
,
Y.
,
Plamthottam
,
R.
,
Yang
,
W.
, and
Pei
,
Q.
,
2022
, “
A Unimorph Nanocomposite Dielectric Elastomer for Large Out-of-Plane Actuation
,”
Sci. Adv.
,
8
(
9
), p.
eabm6200
.10.1126/sciadv.abm6200
18.
Rahmati
,
A. H.
,
Yang
,
S.
,
Bauer
,
S.
, and
Sharma
,
P.
,
2019
, “
Nonlinear Bending Deformation of Soft Electrets and Prospects for Engineering Flexoelectricity and Transverse (d 31) Piezoelectricity
,”
Soft Matter
,
15
(
1
), pp.
127
148
.10.1039/C8SM01664J
19.
van den Ende
,
D.
,
Kamminga
,
J.-D.
,
Boersma
,
A.
,
Andritsch
,
T.
, and
Steeneken
,
P. G.
,
2013
, “
Voltage-Controlled Surface Wrinkling of Elastomeric Coatings
,”
Adv. Mater.
,
25
(
25
), pp.
3438
3442
.10.1002/adma.201300459
20.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based “Grippers” for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
.10.1002/adma.201503078
21.
Torbati
,
M.
,
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
, May
2022
, “
Coupling of Mechanical Deformation and Electromagnetic Fields in Biological Cells
,”
Rev. Mod. Phys.
,
94
(
2
), p.
025003
.10.1103/RevModPhys.94.025003
22.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.10.1126/science.287.5454.836
23.
Huang
,
J.
,
Li
,
T.
,
Chiang Foo
,
C.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Giant, Voltage-Actuated Deformation of a Dielectric Elastomer Under Dead Load
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041911
.10.1063/1.3680591
24.
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
,”
Phys. Rev. Lett.
,
104
(
17
), p.
178302
.10.1103/PhysRevLett.104.178302
25.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2017
, “
Nonlinear Electroelasticity: Material Properties, Continuum Theory and Applications
,”
Proc. R. Soc. A, Royal Society
,
473
, p.
20170311
.10.1098/rspa.2017.0311
26.
Lu
,
T.
,
Ma
,
C.
, and
Wang
,
T.
,
2020
, “
Mechanics of Dielectric Elastomer Structures: A Review
,”
Extreme Mech. Lett.
,
38
, p.
100752
.10.1016/j.eml.2020.100752
27.
Biot
,
M. A.
,
1963
, “
Surface Instability of Rubber in Compression
,”
Appl. Sci. Res., Sect. A
,
12
(
2
), pp.
168
182
.10.1007/BF03184638
28.
Bowden
,
N.
,
Brittain
,
S.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Whitesides
,
G. M.
,
1998
, “
Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer
,”
Nature
,
393
(
6681
), pp.
146
149
.10.1038/30193
29.
Yang
,
S.
,
Khare
,
K.
, and
Lin
,
P.-C.
,
2010
, “
Harnessing Surface Wrinkle Patterns in Soft Matter
,”
Adv. Funct. Mater.
,
20
(
16
), pp.
2550
2564
.10.1002/adfm.201000034
30.
Wang
,
Q.
, and
Zhao
,
X.
,
2013
, “
Creasing-Wrinkling Transition in Elastomer Films Under Electric Fields
,”
Phys. Rev. E
,
88
(
4
), p.
042403
.10.1103/PhysRevE.88.042403
31.
Liu
,
X.
,
Li
,
B.
,
Chen
,
H.
,
Jia
,
S.
, and
Zhou
,
J.
,
2016
, “
Voltage-Induced Wrinkling Behavior of Dielectric Elastomer
,”
J. Appl. Polym. Sci.
,
133
(
14
), p.
43258
.
32.
Godaba
,
H.
,
Zhang
,
Z.-Q.
,
Gupta
,
U.
,
Foo
,
C. C.
, and
Zhu
,
J.
,
2017
, “
Dynamic Pattern of Wrinkles in a Dielectric Elastomer
,”
Soft Matter
,
13
(
16
), pp.
2942
2951
.10.1039/C7SM00198C
33.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2010
, “
Nonlinear Electroelastostatics: Incremental Equations and Stability
,”
Int. J. Eng. Sci.
,
48
(
1
), pp.
1
14
.10.1016/j.ijengsci.2008.06.005
34.
Gent
,
A.
, and
Cho
,
I.
,
1999
, “
Surface Instabilities in Compressed or Bent Rubber Blocks
,”
Rubber Chem. Technol.
,
72
(
2
), pp.
253
262
.10.5254/1.3538798
35.
Trujillo
,
V.
,
Kim
,
J.
, and
Hayward
,
R. C.
,
2008
, “
Creasing Instability of Surface-Attached Hydrogels
,”
Soft Matter
,
4
(
3
), pp.
564
569
.10.1039/b713263h
36.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Formation of Creases on the Surfaces of Elastomers and Gels
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111901
.10.1063/1.3211917
37.
Hohlfeld
,
E.
, and
Mahadevan
,
L.
,
2011
, “
Unfolding the Sulcus
,”
Phys. Rev. Lett.
,
106
(
10
), p.
105702
.10.1103/PhysRevLett.106.105702
38.
Wang
,
Q.
,
Zhang
,
L.
, and
Zhao
,
X.
,
2011
, “
Creasing to Cratering Instability in Polymers Under Ultrahigh Electric Fields
,”
Phys. Rev. Lett.
,
106
(
11
), p.
118301
.10.1103/PhysRevLett.106.118301
39.
Wang
,
Q.
,
Tahir
,
M.
,
Zang
,
J.
, and
Zhao
,
X.
,
2012
, “
Dynamic Electrostatic Lithography: Multiscale on-Demand Patterning on Large-Area Curved Surfaces
,”
Adv. Mater.
,
24
(
15
), pp.
1947
1951
.10.1002/adma.201200272
40.
Zurlo
,
G.
,
Destrade
,
M.
,
DeTommasi
,
D.
, and
Puglisi
,
G.
,
2017
, “
Catastrophic Thinning of Dielectric Elastomers
,”
Phys. Rev. Lett.
,
118
(
7
), p.
078001
.10.1103/PhysRevLett.118.078001
41.
Pocivavsek
,
L.
,
Dellsy
,
R.
,
Kern
,
A.
,
Johnson
,
S.
,
Lin
,
B.
,
Lee
,
K. Y. C.
, and
Cerda
,
E.
,
2008
, “
Stress and Fold Localization in Thin Elastic Membranes
,”
Science
,
320
(
5878
), pp.
912
916
.10.1126/science.1154069
42.
Kim
,
P.
,
Abkarian
,
M.
, and
Stone
,
H. A.
,
2011
, “
Hierarchical Folding of Elastic Membranes Under Biaxial Compressive Stress
,”
Nat. Mater.
,
10
(
12
), pp.
952
957
.10.1038/nmat3144
43.
Tavakol
,
B.
,
Bozlar
,
M.
,
Punckt
,
C.
,
Froehlicher
,
G.
,
Stone
,
H. A.
,
Aksay
,
I. A.
, and
Holmes
,
D. P.
,
2014
, “
Buckling of Dielectric Elastomeric Plates for Soft, Electrically Active Microfluidic Pumps
,”
Soft Matter
,
10
(
27
), pp.
4789
4794
.10.1039/C4SM00753K
44.
Tavakol
,
B.
, and
Holmes
,
D. P.
,
2016
, “
Voltage-Induced Buckling of Dielectric Films Using Fluid Electrodes
,”
Appl. Phys. Lett.
,
108
(
11
), p.
112901
.10.1063/1.4944331
45.
Bense
,
H.
,
Trejo
,
M.
,
Reyssat
,
E.
,
Bico
,
J.
, and
Roman
,
B.
,
2017
, “
Buckling of Elastomer Sheets Under Non-Uniform Electro-Actuation
,”
Soft Matter
,
13
(
15
), pp.
2876
2885
.10.1039/C7SM00131B
46.
Yang
,
S.
,
Zhao
,
X.
, and
Sharma
,
P.
,
2017
, “
Revisiting the Instability and Bifurcation Behavior of Soft Dielectrics
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031008
.10.1115/1.4035499
47.
Stark
,
K.
, and
Garton
,
C.
,
1955
, “
Electric Strength of Irradiated Polythene
,”
Nature
,
176
(
4495
), pp.
1225
1226
.10.1038/1761225a0
48.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.10.1016/j.ijsolstr.2006.03.026
49.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.10.1063/1.2768641
50.
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Electromechanical Instability in Semicrystalline Polymers
,”
Appl. Phys. Lett.
,
95
(
3
), p.
031904
.10.1063/1.3186078
51.
Yang
,
S.
,
Zhao
,
X.
, and
Sharma
,
P.
,
2017
, “
Avoiding the Pull-In Instability of a Dielectric Elastomer Film and the Potential for Increased Actuation and Energy Harvesting
,”
Soft Matter
,
13
(
26
), pp.
4552
4558
.10.1039/C7SM00542C
52.
Chen
,
L.
,
Yang
,
X.
,
Wang
,
B.
, and
Yang
,
S.
, Aug
2020
, “
Nonlinear Electromechanical Coupling in Graded Soft Materials: Large Deformation, Instability, and Electroactuation
,”
Phys. Rev. E
,
102
(
2
), p.
023007
.10.1103/PhysRevE.102.023007
53.
Chen
,
L.
,
Yang
,
X.
,
Wang
,
B.
,
Yang
,
S.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2021
, “
The Interplay Between Symmetry-Breaking and Symmetry-Preserving Bifurcations in Soft Dielectric Films and the Emergence of Giant Electro-Actuation
,”
Extreme Mech. Lett.
,
43
, p.
101151
.10.1016/j.eml.2020.101151
54.
Chen
,
L.
,
Xing
,
X.
, and
Yang
,
S.
,
2022
, “
Symmetry-Breaking Instability in a Charge-Controlled Dielectric Film: Large Electro-Actuation and High Stored Energy
,”
J. Appl. Phys.
,
131
(
18
), p.
184101
.10.1063/5.0089392
55.
Wang
,
Q.
,
Suo
,
Z.
, and
Zhao
,
X.
,
2012
, “
Bursting Drops in Solid Dielectrics Caused by High Voltages
,”
Nat. Commun.
,
3
(
1
), p.
1157
.10.1038/ncomms2178
56.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2019
, “
Instabilities of Soft Dielectrics
,”
Philos. Trans. R. Soc. A Math., Phys. Eng. Sci.
,
377
(
2144
), p.
20180077
.10.1098/rsta.2018.0077
57.
Chen
,
L.
, and
Yang
,
S.
,
2022
, “
Electro-Cavitation and Electro-Assisted Snap-Through Instability of a Hollow Sphere of Dielectric Elastomers
,”
Thin-Walled Struct.
,
181
, p.
109995
.10.1016/j.tws.2022.109995
58.
Zhao
,
X.
, and
Wang
,
Q.
,
2014
, “
Harnessing Large Deformation and Instabilities of Soft Dielectrics: Theory, Experiment, and Application
,”
Appl. Phys. Rev.
,
1
(
2
), p.
021304
.10.1063/1.4871696
59.
Hu
,
N.
, and
Burgueño
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
.10.1088/0964-1726/24/6/063001
60.
Pal
,
A.
,
Restrepo
,
V.
,
Goswami
,
D.
, and
Martinez
,
R. V.
,
2021
, “
Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation
,”
Adv. Mater.
,
33
(
19
), p.
2006939
.10.1002/adma.202006939
61.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson's Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.10.1002/adma.200901956
62.
Chan
,
E. P.
,
Smith
,
E. J.
,
Hayward
,
R. C.
, and
Crosby
,
A. J.
,
2008
, “
Surface Wrinkles for Smart Adhesion
,”
Adv. Mater.
,
20
(
4
), pp.
711
716
.10.1002/adma.200701530
63.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), pp.
421
425
.10.1038/nature03185
64.
Holmes
,
D. P.
,
2019
, “
Elasticity and Stability of Shape-Shifting Structures
,”
Curr. Opin. Colloid Interface Sci.
,
40
, pp.
118
137
.10.1016/j.cocis.2019.02.008
65.
Chen
,
L.
,
Tan
,
K.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Evoking the Snap-Through Instability in Hard-Magnetic Soft Materials: Rapid Actuation and Giant Deformation
,”
Int. J. Solids Struct.
,
246–247
, p.
111607
.10.1016/j.ijsolstr.2022.111607
66.
Tan
,
K.
,
Chen
,
L.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Dynamic Snap-Through Instability and Damped Oscillation of a Flat Arch of Hard Magneto-Active Elastomers
,”
Int. J. Mech. Sci.
,
230
, p.
107523
.10.1016/j.ijmecsci.2022.107523
67.
Mbarki
,
R.
,
Baccam
,
N.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2014
, “
Piezoelectricity Above the Curie Temperature? combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling
,”
Appl. Phys. Lett.
,
104
(
12
), p.
122904
.10.1063/1.4869478
68.
Strogatz
,
S. H.
,
2014
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Westview Press
, Boulder, CO.
69.
Seydel
,
R.
,
2009
,
Practical Bifurcation and Stability Analysis
, Vol.
5
,
Springer Science & Business Media
, Berlin.
70.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol.
42
,
Springer Science & Business Media
, Berlin.
71.
Perko
,
L.
,
2013
,
Differential Equations and Dynamical Systems
, Vol.
7
,
Springer Science & Business Media
, Berlin.
72.
Kuznetsov
,
Y. A.
,
2013
,
Elements of Applied Bifurcation Theory
, Vol.
112
,
Springer Science & Business Media
, Berlin.
73.
Sastry
,
S.
,
2013
,
Nonlinear Systems: Analysis, Stability, and Control
, Vol.
10
,
Springer Science & Business Media
, Berlin.
74.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGrawHill-Kogakusha Ltd
.,
Tokyo, Japan
.
75.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
World Scientific
, Hackensack, NJ.
76.
Antman
,
S.
,
2013
,
Nonlinear Problems of Elasticity
, Vol.
107
,
Springer Science & Business Media
, Berlin.
77.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corporation
, North Chelmsford, MA.
78.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
,
Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
,
Springer Science & Business Media
, Berlin.
79.
Golubitsky
,
M.
,
Stewart
,
I.
, and
Schaeffer
,
D. G.
,
2012
,
Singularities and Groups in Bifurcation Theory
, Vol.
2
,
Springer Science & Business Media
, Berlin.
80.
Van der Heijden
,
A. M.
,
2009
,
WT Koiter's Elastic Stability of Solids and Structures
, Vol.
10
,
Cambridge University Press
,
Cambridge, UK
.
81.
Liu
,
L.
,
2013
, “
On Energy Formulations of Electrostatics for Continuum Media
,”
J. Mech. Phys. Solids
,
61
(
4
), pp.
968
990
.10.1016/j.jmps.2012.12.007
82.
Liu
,
L.
,
2014
, “
An Energy Formulation of Continuum Magneto-Electro-Elasticity With Applications
,”
J. Mech. Phys. Solids
,
63
, pp.
451
480
.10.1016/j.jmps.2013.08.001
83.
Lyapunov
,
A. M.
,
1992
, “
The General Problem of the Stability of Motion
,”
Int. J. Control
,
55
(
3
), pp.
531
534
.10.1080/00207179208934253
84.
Triantafyllidis
,
N.
,
2011
,
Stability of Solids: From Structures to Materials
,
Ecole Polytechnique
, Paris, France.
85.
Thompson
,
J. M. T.
, and
Hunt
,
G. W.
,
1973
,
A General Theory of Elastic Stability
,
Wiley
, Hoboken, NJ.
86.
Budiansky
,
B.
,
1974
, “
Theory of Buckling and Post-Buckling Behavior of Elastic Structures
,”
Advances in Applied Mechanics
, Vol.
14
,
Elsevier
, Cambridge, MA, pp.
1
65
.
87.
Knops
,
R. J.
, and
Wilkes
,
E.
,
1973
, “
Theory of Elastic Stability(Liapunov Functions Application to Stability Analysis of Dynamic Systems and Elastic Bodies, Considering Eigenfunction Method, Maximum Principle and Energy Criterion)
,”
Solid-State Mechanics 3.(a 73-45495 24-32)
,
Springer-Verlag
,
Berlin
, pp.
125
302
.
88.
Como
,
M.
, and
Grimaldi
,
A.
,
1995
,
Theory of Stability of Continuous Elastic Structures
, Vol.
1
,
CRC Press
, Boca Raton, FL.
89.
Chen
,
Y-C.
,
Yang
,
S.
, and
Wheeler
,
L.
,
2018
, “
Surface Instability of Elastic Half-Spaces by Using the Energy Method
,”
Proc. R. Soc. A
,
474
(
2213
), p.
20170854
.10.1098/rspa.2017.0854
90.
Courant
,
R.
, and
Hilbert
,
D.
,
1953
,
Methods of Mathematical Physics
, Volume
I
,
Interscience Publishers
, New York.
91.
Weinstock
,
R.
,
1974
,
Calculus of Variations: With Applications to Physics and Engineering
,
Courier Corporation
, North Chelmsford, MA.
92.
Ball
,
J. M.
,
1998
, “
The Calculus of Variations and Materials Science
,”
Q. Appl. Math.
,
56
(
4
), pp.
719
740
.10.1090/qam/1668735
93.
Chen
,
Y.
,
2001
,
Nonlinear Elasticity: Theory and Applications
(Singularity Theory and Nonlinear Bifurcation Analysis,),
Cambridge University Press
,
Cambridge, UK
, pp.
305
344
.
94.
Ericksen
,
J.
, and
Toupin
,
R.
,
1956
, “
Implications of Hadamard's Conditions for Elastic Stability With Respect to Uniqueness Theorems
,”
Can. J. Math.
,
8
, pp.
432
436
.10.4153/CJM-1956-051-2
95.
Hill
,
R.
,
1957
, “
On Uniqueness and Stability in the Theory of Finite Elastic Strain
,”
J. Mech. Phys. Solids
,
5
(
4
), pp.
229
241
.10.1016/0022-5096(57)90016-9
96.
Chen
,
Y.-C.
, and
Haughton
,
D.
,
2003
, “
Stability and Bifurcation of Inflation of Elastic Cylinders
,”
Proc. Royal Soc. London A Math., Phys. Eng. Sci.
,
459
pp.
137
156
.10.1098/rspa.2002.1024
97.
Chen
,
Y-C.
, and
Fried
,
E.
,
2014
, “
Stability and Bifurcation of a Soap Film Spanning a Flexible Loop
,”
J. Elast.
,
116
(
1
), pp.
75
100
.10.1007/s10659-013-9458-x
98.
Gurtin
,
M. E.
,
1982
,
An Introduction to Continuum Mechanics
, Vol.
158
,
Academic Press
, Washington, DC.
99.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
, New York.
100.
Holzapfel
,
A. G.
,
2000
,
Nonlinear Solid Mechanics II
,
Wiley
, Hoboken, NJ.
101.
McMeeking
,
R. M.
, and
Landis
,
C. M.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
581
590
.10.1115/1.1940661
102.
Bustamante
,
R.
,
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2009
, “
On Electric Body Forces and Maxwell Stresses in Nonlinearly Electroelastic Solids
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1131
1141
.10.1016/j.ijengsci.2008.10.010
103.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
, “
The Non-Linear Field Theories of Mechanics
,”
The Non-Linear Field Theories of Mechanics
,
Springer
, Berlin, pp.
1
579
.
104.
Reddy
,
J. N.
,
2007
,
An Introduction to Continuum Mechanics
,
Cambridge University Press
, New York.
105.
Fung
,
Y. C.
, and
Tong
,
P.
,
2001
,
Classical and Computational Solid Mechanics
, Vol.
1
,
World Scientific Publishing
, Hackensack, NJ.
106.
Huang
,
Z.
,
2003
,
Fundamentals of Continuum Mechanics
,
Higher Education Press
,
Beijing, China
(in Chinese).
107.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
J. Ration. Mech. Anal.
,
5
(
6
), pp.
849
915
.
108.
Toupin
,
R.
,
1960
, “
Stress Tensors in Elastic Dielectrics
,”
Arch. Ration. Mech. Anal.
,
5
(
1
), pp.
440
452
.10.1007/BF00252921
109.
Ericksen
,
J.
,
2002
, “
Electromagnetic Effects in Thermoelastic Materials
,”
Math. Mech. Solids
,
7
(
2
), pp.
165
189
.10.1177/1081286502007002222
110.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2005
, “
Nonlinear Electroelasticity
,”
Acta Mech.
,
174
(
3–4
), pp.
167
183
.10.1007/s00707-004-0202-2
111.
Ericksen
,
J.
,
2007
, “
Theory of Elastic Dielectrics Revisited
,”
Arch. Ration. Mech. Anal.
,
183
(
2
), pp.
299
313
.10.1007/s00205-006-0042-4
112.
Fosdick
,
R.
, and
Tang
,
H.
,
2007
, “
Electrodynamics and Thermomechanics of Material Bodies
,”
J. Elasticity
,
88
(
3
), pp.
255
297
.10.1007/s10659-007-9124-2
113.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W. H.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.10.1016/j.jmps.2007.05.021
114.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.10.1016/S0894-9166(11)60004-9
115.
Riley
,
K. F.
, and
Hobson
,
M. P.
,
2011
,
Essential Mathematical Methods for the Physical Sciences
,
Cambridge University Press
, New York.
116.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
, Vol.
2
,
Siam
, Philadelphia, PA.
117.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
118.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. London A Math., Phys. Eng. Sci.
,
241
(
835
), pp.
379
397
.10.1098/rsta.1948.0024
119.
Ogden
,
R.
,
1972
, “
Large Deformation Isotropic Elasticity-On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
326
, pp.
565
584
.10.1098/rspa.1972.0096
120.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
121.
Gent
,
A.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.10.5254/1.3538357
122.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.10.5254/1.3547602
123.
Xiang
,
Y.
,
Zhong
,
D.
,
Wang
,
P.
,
Mao
,
G.
,
Yu
,
H.
, and
Qu
,
S.
,
2018
, “
A General Constitutive Model of Soft Elastomers
,”
J. Mech. Phys. Solids
,
117
, pp.
110
122
.10.1016/j.jmps.2018.04.016
124.
Destrade
,
M.
,
Dorfmann
,
L.
, and
Saccomandi
,
G.
,
2022
, “
The Ogden Model of Rubber Mechanics: 50 Years of Impact on Nonlinear Elasticity
,”
Philos. Trans. R. Soc. A Math., Phys. Eng. Sci.
,
380
(
2234
), p.
20210332
.10.1098/rsta.2021.0332
125.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.10.1103/PhysRevB.76.134113
126.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.10.1016/j.jmps.2013.09.021
127.
Bertoldi
,
K.
, and
Gei
,
M.
,
2011
, “
Instabilities in Multilayered Soft Dielectrics
,”
J. Mech. Phys. Solids
,
59
(
1
), pp.
18
42
.10.1016/j.jmps.2010.10.001
128.
Park
,
H. S.
,
Wang
,
Q.
,
Zhao
,
X.
, and
Klein
,
P. A.
,
2013
, “
Electromechanical Instability on Dielectric Polymer Surface: Modeling and Experiment
,”
Comput. Methods Appl. Mech. Eng.
,
260
, pp.
40
49
.10.1016/j.cma.2013.03.020
129.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
, “
Instabilities of an Electroelastic Plate
,”
Int. J. Eng. Sci.
,
77
, pp.
79
101
.10.1016/j.ijengsci.2013.12.007
130.
Lu
,
T.
,
An
,
L.
,
Li
,
J.
,
Yuan
,
C.
, and
Wang
,
T.
,
2015
, “
Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube
,”
J. Mech. Phys. Solids
,
85
, pp.
160
175
.10.1016/j.jmps.2015.09.010
131.
Liang
,
X.
, and
Cai
,
S.
,
2018
, “
New Electromechanical Instability Modes in Dielectric Elastomer Balloons
,”
Int. J. Solids Struct.
,
132–133
, pp.
96
104
.10.1016/j.ijsolstr.2017.09.021
132.
Seifi
,
S.
, and
Park
,
H.
,
2017
, “
Electro-Elastocapillary Rayleigh-Plateau Instability in Dielectric Elastomer Films
,”
Soft Matter
,
13
(
23
), pp.
4305
4310
.10.1039/C7SM00917H
133.
Bortot
,
E.
, and
Shmuel
,
G.
,
2017
, “
Tuning Sound With Soft Dielectrics
,”
Smart Mater. Struct.
,
26
(
4
), p.
045028
.10.1088/1361-665X/aa6387
134.
Bortot
,
E.
, and
Shmuel
,
G.
,
2018
, “
Prismatic Bifurcations of Soft Dielectric Tubes
,”
Int. J. Eng. Sci.
,
124
, pp.
104
114
.10.1016/j.ijengsci.2017.11.002
135.
Mao
,
G.
,
Wu
,
L.
,
Liang
,
X.
, and
Qu
,
S.
,
2017
, “
Morphology of Voltage-Triggered Ordered Wrinkles of a Dielectric Elastomer Sheet
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111005
.10.1115/1.4037833
136.
Mao
,
G.
,
Wu
,
L.
,
Fu
,
Y.
,
Liu
,
J.
, and
Qu
,
S.
,
2018
, “
Voltage-Controlled Radial Wrinkles of a Trumpet-Like Dielectric Elastomer Structure
,”
AIP Adv.
,
8
(
3
), p.
035314
.10.1063/1.5021028
137.
Su
,
Y.
,
Broderick
,
H. C.
,
Chen
,
W.
, and
Destrade
,
M.
,
2018
, “
Wrinkles in Soft Dielectric Plates
,”
J. Mech. Phys. Solids
,
119
, pp.
298
318
.10.1016/j.jmps.2018.07.001
138.
Su
,
Y.
,
Wu
,
B.
,
Chen
,
W.
, and
Destrade
,
M.
,
2019
, “
Finite Bending and Pattern Evolution of the Associated Instability for a Dielectric Elastomer Slab
,”
Int. J. Solids Struct.
,
158
, pp.
191
209
.10.1016/j.ijsolstr.2018.09.008
139.
Greaney
,
P.
,
Meere
,
M.
, and
Zurlo
,
G.
,
2019
, “
The Out-of-Plane Behaviour of Dielectric Membranes: Description of Wrinkling and Pull-In Instabilities
,”
J. Mech. Phys. Solids
,
122
, pp.
84
97
.10.1016/j.jmps.2018.09.006
140.
Fu
,
Y.
,
Xie
,
Y.
, and
Dorfmann
,
L.
,
2018
, “
A Reduced Model for Electrodes-Coated Dielectric Plates
,”
Int. J. Non-Linear Mech.
,
106
, pp.
60
69
.10.1016/j.ijnonlinmec.2018.09.001
141.
Yang
,
S.
, and
Yu
,
T.
,
2022
, “
Inhomogeneous Thinning of Imperfect Dielectric Elastomer Films: Large Deformation and Nonlinear Electromechanical Instability
,”
Int. J. Solids Struct.
,
236–237
, p.
111306
.10.1016/j.ijsolstr.2021.111306
142.
Huang
,
R.
, and
Suo
,
Z.
,
2012
, “
Electromechanical Phase Transition in Dielectric Elastomers
,”
Proc. R. Soc. A
,
468
(
2140
), pp.
1014
1040
.10.1098/rspa.2011.0452
143.
He
,
T.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(
8
), p.
083522
.10.1063/1.3253322
144.
Yang
,
S.
, and
Chen
,
Y-C.
,
2017
, “
Wrinkle Surface Instability of an Inhomogeneous Elastic Block With Graded Stiffness
,”
Proc. R. Soc. A Royal Soc.
,
473
, p.
20160882
.10.1098/rspa.2016.0882
145.
Norris
,
A.
,
2008
, “
Comment on “Method to Analyze Electromechanical Stability of Dielectric Elastomers” [Appl. Phys. Lett. 91, 061921 (2007)]
,”
Appl. Phys. Lett.
,
92
(
2
), p.
026101
.10.1063/1.2833688
146.
Díaz-Calleja
,
R.
,
Riande
,
E.
, and
Sanchis
,
M.
,
2008
, “
On Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
93
(
10
), p.
101902
.10.1063/1.2972124
147.
Xu
,
B.-X.
,
Mueller
,
R.
,
Klassen
,
M.
, and
Gross
,
D.
,
2010
, “
On Electromechanical Stability Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
97
(
16
), p.
162908
.10.1063/1.3504702
148.
Li
,
B.
,
Zhou
,
J.
, and
Chen
,
H.
,
2011
, “
Electromechanical Stability in Charge-Controlled Dielectric Elastomer Actuation
,”
Appl. Phys. Lett.
,
99
(
24
), p.
244101
.10.1063/1.3670048
149.
Alameh
,
Z.
,
Yang
,
S.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2018
, “
Emergent Magnetoelectricity in Soft Materials, Instability, and Wireless Energy Harvesting
,”
Soft Matter
,
14
(
28
), pp.
5856
5868
.10.1039/C8SM00587G
150.
Li
,
H.
,
Chen
,
L.
,
Zhao
,
C.
, and
Yang
,
S.
,
2021
, “
Evoking or Suppressing Electromechanical Instabilities in Soft Dielectrics With Deformation-Dependent Dielectric Permittivity
,”
Int. J. Mech. Sci.
,
202–203
, p.
106507
.10.1016/j.ijmecsci.2021.106507
151.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling
,”
Phys. Rev. E
,
90
(
1
), p.
012603
.10.1103/PhysRevE.90.012603
152.
Ball
,
J. M.
,
1982
, “
Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity
,”
Phil. Trans. R. Soc. Lond. A
,
306
(
1496
), pp.
557
611
.10.1098/rsta.1982.0095
153.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.10.1039/C1SM06736B
154.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.10.1016/j.jmps.2012.09.006
155.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2006
, “
Nonlinear Electroelastic Deformations
,”
J. Elast.
,
82
(
2
), pp.
99
127
.10.1007/s10659-005-9028-y
156.
He
,
X.
,
Yong
,
H.
, and
Zhou
,
Y.
,
2011
, “
The Characteristics and Stability of a Dielectric Elastomer Spherical Shell With a Thick Wall
,”
Smart Mater. Struct.
,
20
(
5
), p.
055016
.10.1088/0964-1726/20/5/055016
157.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
, “
Nonlinear Response of an Electroelastic Spherical Shell
,”
Int. J. Eng. Sci.
,
85
, pp.
163
174
.10.1016/j.ijengsci.2014.09.001
158.
Xie
,
Y.-X.
,
Liu
,
J.-C.
, and
Fu
,
Y.
,
2016
, “
Bifurcation of a Dielectric Elastomer Balloon Under Pressurized Inflation and Electric Actuation
,”
Int. J. Solids Struct.
,
78–79
, pp.
182
188
.10.1016/j.ijsolstr.2015.08.027
159.
Wang
,
F.
,
Yuan
,
C.
,
Lu
,
T.
, and
Wang
,
T.
,
2017
, “
Anomalous Bulging Behaviors of a Dielectric Elastomer Balloon Under Internal Pressure and Electric Actuation
,”
J. Mech. Phys. Solids
,
102
, pp.
1
16
.10.1016/j.jmps.2017.01.021
160.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
deBotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
206
209
.10.1016/j.ijnonlinmec.2011.05.006
161.
Bortot
,
E.
,
2017
, “
Analysis of Multilayer Electro-Active Spherical Balloons
,”
J. Mech. Phys. Solids
,
101
, pp.
250
267
.10.1016/j.jmps.2017.02.001
162.
Koiter
,
W. T.
,
1945
, On the Stability of Elastic Equilibrium (in Dutch with English Summary), Ph.D. thesis, Ithaca, NY.
163.
Hutchinson
,
J.
, and
Koiter
,
W.
,
1970
, “
Postbuckling Theory
,”
Appl. Mech. Rev
,
23
(
12
), pp.
1353
1366
.
164.
Casciaro
,
R.
,
2005
,
Computational Asymptotic Post-Buckling Analysis of Slender Elastic Structures
,
Springer
,
Vienna
, pp.
195
276
.
165.
Koiter
,
W.
,
1981
, “
Elastic Stability, Buckling and Post-Buckling Behaviour
,”
Proceedings of the IUTAM Symposium on Finite Elasticity
,
Springer
, Dordrecht, The Netherlands.10.1007/978-94-009-7538-5_2
166.
Simitses
,
G. J.
,
1986
, “
Buckling and Postbuckling of Imperfect Cylindrical Shells: A Review
,”
ASME Appl. Mech. Rev.
,
39
(
10
), pp.
1517
1524
.10.1115/1.3149506
167.
Triantafyllidis
,
N.
, and
Peek
,
R.
,
1992
, “
On Stability and the Worst Imperfection Shape in Solids With Nearly Simultaneous Eigenmodes
,”
Int. J. Solids Struct.
,
29
(
18
), pp.
2281
2299
.10.1016/0020-7683(92)90216-G
168.
Peek
,
R.
, and
Kheyrkhahan
,
M.
,
1993
, “
Postbuckling Behavior and Imperfection Sensitivity of Elastic Structures by the Lyapunov-Schmidt-Koiter Approach
,”
Comput. Methods Appl. Mech. Eng.
,
108
(
3–4
), pp.
261
279
.10.1016/0045-7825(93)90005-I
169.
Pampolini
,
G.
, and
Triantafyllidis
,
N.
,
2018
, “
Continuum Electromechanical Theory for Nematic Continua With Application to Freedericksz Instability
,”
J. Elast.
,
132
(
2
), pp.
219
242
.10.1007/s10659-017-9665-y
170.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
From Wrinkles to Creases in Elastomers: The Instability and Imperfection-Sensitivity of Wrinkling
,”
Proc. R. Soc. A
,
468
(
2137
), pp.
94
115
.10.1098/rspa.2011.0384
171.
Hutchinson
,
J. W.
,
2013
, “
The Role of Nonlinear Substrate Elasticity in the Wrinkling of Thin Films
,”
Philos. Trans. R. Soc. A Math., Phys. Eng. Sci.
,
371
(
1993
), p.
20120422
.10.1098/rsta.2012.0422
172.
Chiang Foo
,
C.
,
Cai
,
S.
,
Jin Adrian Koh
,
S.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2012
, “
Model of Dissipative Dielectric Elastomers
,”
J. Appl. Phys.
,
111
(
3
), p.
034102
.10.1063/1.3680878
173.
Chiang Foo
,
C.
,
Jin Adrian Koh
,
S.
,
Keplinger
,
C.
,
Kaltseis
,
R.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2012
, “
Performance of Dissipative Dielectric Elastomer Generators
,”
J. Appl. Phys.
,
111
(
9
), p.
094107
.10.1063/1.4714557
174.
Wang
,
S.
,
Decker
,
M.
,
Henann
,
D. L.
, and
Chester
,
S. A.
,
2016
, “
Modeling of Dielectric Viscoelastomers With Application to Electromechanical Instabilities
,”
J. Mech. Phys. Solids
,
95
, pp.
213
229
.10.1016/j.jmps.2016.05.033
175.
Xiao
,
Y.
, and
Bhattacharya
,
K.
,
2008
, “
A Continuum Theory of Deformable, Semiconducting Ferroelectrics
,”
Arch. Ration. Mech. Anal.
,
189
(
1
), pp.
59
95
.10.1007/s00205-007-0096-y
176.
Darbaniyan
,
F.
,
Dayal
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2019
, “
Designing Soft Pyroelectric and Electrocaloric Materials Using Electrets
,”
Soft Matter
,
15
(
2
), pp.
262
277
.10.1039/C8SM02003E
177.
Cerda
,
E.
,
Chaieb
,
S.
,
Melo
,
F.
, and
Mahadevan
,
L.
,
1999
, “
Conical Dislocations in Crumpling
,”
Nature
,
401
(
6748
), pp.
46
49
.10.1038/43395
178.
Cerda
,
E.
, and
Mahadevan
,
L.
,
1998
, “
Conical Surfaces and Crescent Singularities in Crumpled Sheets
,”
Phys. Rev. Lett.
,
80
(
11
), pp.
2358
2361
.10.1103/PhysRevLett.80.2358
179.
Kodali
,
P.
,
Saravanavel
,
G.
, and
Sambandan
,
S.
,
2017
, “
Crumpling for Energy: Modeling Generated Power From the Crumpling of Polymer Piezoelectric Foils for Wearable Electronics
,”
Flexible Printed Electron.
,
2
(
3
), p.
035005
.10.1088/2058-8585/aa7be5
180.
Wang
,
B.
,
Yang
,
S.
, and
Sharma
,
P.
,
2019
, “
Flexoelectricity as a Universal Mechanism for Energy Harvesting From Crumpling of Thin Sheets
,”
Phys. Rev. B
,
100
(
3
), p.
035438
.10.1103/PhysRevB.100.035438
181.
Castañeda
,
P. P.
, and
Siboni
,
M.
,
2012
, “
A Finite-Strain Constitutive Theory for Electro-Active Polymer Composites Via Homogenization
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
293
306
.10.1016/j.ijnonlinmec.2011.06.012
182.
Siboni
,
M. H.
, and
Castañeda
,
P. P.
,
2014
, “
Fiber-Constrained, Dielectric-Elastomer Composites: Finite-Strain Response and Stability Analysis
,”
J. Mech. Phys. Solids
,
68
, pp.
211
238
.10.1016/j.jmps.2014.03.008
183.
Siboni
,
M. H.
,
Avazmohammadi
,
R.
, and
Castañeda
,
P. P.
,
2015
, “
Electromechanical Instabilities in Fiber-Constrained, Dielectric-Elastomer Composites Subjected to All-Around Dead-Loading
,”
Math. Mech. Solids
,
20
(
6
), pp.
729
759
.10.1177/1081286514551501
184.
Siboni
,
M. H.
, and
Castañeda
,
P. P.
,
2020
, “
Fiber-Constrained Dielectric Elastomer Composites: Finite Deformation Response and Instabilities Under Non-Aligned Loadings
,”
Int. J. Solids Struct.
,
184
, pp.
73
98
.10.1016/j.ijsolstr.2019.03.027
185.
Rudykh
,
S.
, and
deBotton
,
G.
,
2011
, “
Stability of Anisotropic Electroactive Polymers With Application to Layered Media
,”
Z. Angew. Math. Phys.
,
62
(
6
), pp.
1131
1142
.10.1007/s00033-011-0136-1
186.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
deBotton
,
G.
,
2014
, “
Multiscale Instabilities in Soft Heterogeneous Dielectric Elastomers
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
470
(
2162
), p.
20130618
.10.1098/rspa.2013.0618
187.
Spinelli
,
S. A.
, and
Lopez-Pamies
,
O.
,
2015
, “
Some Simple Explicit Results for the Elastic Dielectric Properties and Stability of Layered Composites
,”
Int. J. Eng. Sci.
,
88
, pp.
15
28
.10.1016/j.ijengsci.2014.01.005
188.
Vu
,
D. K.
,
Steinmann
,
P.
, and
Possart
,
G.
,
2007
, “
Numerical Modelling of Non-Linear Electroelasticity
,”
Int. J. Numer. Methods Eng.
,
70
(
6
), pp.
685
704
.10.1002/nme.1902
189.
Vu
,
D.
, and
Steinmann
,
P.
,
2012
, “
On 3-D Coupled BEM-FEM Simulation of Nonlinear Electro-Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
201–204
, pp.
82
90
.10.1016/j.cma.2011.08.024
190.
Miehe
,
C.
,
Rosato
,
D.
, and
Kiefer
,
B.
,
2011
, “
Variational Principles in Dissipative Electro-Magneto-Mechanics: A Framework for the Macro-Modeling of Functional Materials
,”
Int. J. Numer. Methods Eng.
,
86
(
10
), pp.
1225
1276
.10.1002/nme.3127
191.
Zäh
,
D.
, and
Miehe
,
C.
,
2013
, “
Computational Homogenization in Dissipative Electro-Mechanics of Functional Materials
,”
Comput. Methods Appl. Mech. Eng.
,
267
, pp.
487
510
.10.1016/j.cma.2013.09.012
192.
Miehe
,
C.
,
Vallicotti
,
D.
, and
Teichtmeister
,
S.
,
2015
, “
Homogenization and Multiscale Stability Analysis in Finite Magneto-Electro-Elasticity
,”
Ges. Angew. Math. Mech.
,
38
(
2
), pp.
313
343
.10.1002/gamm.201510017
193.
Miehe
,
C.
,
Vallicotti
,
D.
, and
Teichtmeister
,
S.
,
2016
, “
Homogenization and Multiscale Stability Analysis in Finite Magneto-Electro-Elasticity. Application to Soft Matter EE, ME and MEE Composites
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
294
346
.10.1016/j.cma.2015.10.013
194.
Polukhov
,
E.
,
Vallicotti
,
D.
, and
Keip
,
M.-A.
,
2018
, “
Computational Stability Analysis of Periodic Electroactive Polymer Composites Across Scales
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
165
197
.10.1016/j.cma.2018.01.020
195.
Winterhalter
,
M.
, and
Helfrich
,
W.
,
1988
, “
Deformation of Spherical Vesicles by Electric Fields
,”
J. Colloid Interface Sci.
,
122
(
2
), pp.
583
586
.10.1016/0021-9797(88)90395-5
196.
Kummrow
,
M.
, and
Helfrich
,
W.
,
1991
, “
Deformation of Giant Lipid Vesicles by Electric Fields
,”
Phys. Rev. A
,
44
(
12
), pp.
8356
8360
.10.1103/PhysRevA.44.8356
197.
Yamamoto
,
T.
,
Aranda-Espinoza
,
S.
,
Dimova
,
R.
, and
Lipowsky
,
R.
,
2010
, “
Stability of Spherical Vesicles in Electric Fields
,”
Langmuir
,
26
(
14
), pp.
12390
12407
.10.1021/la1011132
198.
Portet
,
T.
,
Mauroy
,
C.
,
Démery
,
V.
,
Houles
,
T.
,
Escoffre
,
J.-M.
,
Dean
,
D. S.
, and
Rols
,
M.-P.
,
2012
, “
Destabilizing Giant Vesicles With Electric Fields: An Overview of Current Applications
,”
J. Membr. Biol.
,
245
(
9
), pp.
555
564
.10.1007/s00232-012-9467-x
199.
Vlahovska
,
P. M.
,
2019
, “
Electrohydrodynamics of Drops and Vesicles
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
305
330
.10.1146/annurev-fluid-122316-050120
You do not currently have access to this content.