Abstract

Many animals in nature travel in groups either for protection, survival, or endurance. Among these, certain species do so under the burden of aero/hydrodynamic loads, which incites questions as to the significance of the multi-body fluid-mediated interactions that are inherent to collective flying/swimming. Prime examples of such creatures are fish, which are commonly seen traveling in highly organized groups of large numbers. Indeed, over the years, there have been numerous attempts to examine hydrodynamic interactions among self-propelled fish-like swimmers. Though many have studied this phenomenon, their motivations have varied from understanding animal behavior to extracting universal fluid dynamical principles and transplanting them into engineering applications. The approaches utilized to carry out these investigations include theoretical and computational analyses, field observations, and experiments using various abstractions of biological fish. Here, we compile representative investigations focused on the collective hydrodynamics of fish-like swimmers. The selected body of works are reviewed in the context of their methodologies and findings, so as to draw parallels, reveal previously unnoticed associations, contrast differences, and highlight open questions.

This content is only available via PDF.
You do not currently have access to this content.