Research Papers

Laser Diagnostics of Plasma in Synthesis of Graphene-Based Materials

[+] Author and Article Information
Alfredo D. Tuesta

Nanoscale Transport Research Group,
School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: atuesta@purdue.edu

Aizaz Bhuiyan

Applied Laser Spectroscopy Laboratory,
School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: abhuiyan@purdue.edu

Robert P. Lucht

Applied Laser Spectroscopy Laboratory,
School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: lucht@purdue.edu

Timothy S. Fisher

Nanoscale Transport Research Group,
School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: tsfisher@purdue.edu

1Correspondence author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received February 20, 2014; final manuscript received April 23, 2014; published online July 8, 2014. Editor: Jian Cao.

J. Micro Nano-Manuf 2(3), 031002 (Jul 08, 2014) (8 pages) Paper No: JMNM-14-1010; doi: 10.1115/1.4027547 History: Received February 20, 2014; Revised April 23, 2014

Rotational temperature profiles of H2 in a microwave plasma chemical vapor deposition (MPCVD) reactor were measured via coherent anti-Stokes Raman scattering (CARS) spectroscopy. The temperature was found to increase with reactor pressure, plasma generator power, and distance from the deposition surface. At 10 Torr, the measured temperature range was approximately 700–1200 K while at 30 Torr it was 1200–2000 K under the conditions studied. The introduction of CH4 and N2 to the plasma increased the rotational temperature consistently. These findings will aid in understanding the function of the chemical composition and reactions in the plasma environment of these reactors which, to date, remains obscure.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Shokrieh, M. M., and Rafiee, R., 2010, “A Review of the Mechanical Properties of Isolated Carbon Nanotubes and Carbon Nanotube Composites,” Mech. Compos. Mater., 46(2), pp. 155–172. [CrossRef]
Shokrieh, M. M., and Rafiee, R., 2010, “Prediction of Young's Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach,” Mater. Des., 31(2), pp. 790–795. [CrossRef]
Che, J., Cagin, T., and Goddard, W. A., III, 2000, “Thermal Conductivity of Carbon Nanotubes,” Nanotechnology, 11, pp. 65–69. [CrossRef]
Dresselhaus, M. S., and Eklund, P. C., 2000, “Phonons in Carbon Nanotubes,” Adv. Phys., 49(6), pp. 705–814. [CrossRef]
Lan, C., Amama, P. B., Fisher, T. S., and Reifenberger, R. G., 2007, “Correlating Electrical Resistance to Growth Conditions for Multiwalled Carbon Nanotubes,” Appl. Phys. Lett., 91(9), p. 093105. [CrossRef]
Hone, J., Llaguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J., and Smalley, R. E., 2000, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Appl. Phys. Lett., 77(5), pp. 666–668. [CrossRef]
Amama, P. B., Lan, C., Cola, B. A., Xu, X., Reifenberger, R. G., and Fisher, T. S., 2008, “Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown Under Direct Current Bias Voltage,” J. Phys. Chem. C, 112(49), pp. 19727–19733. [CrossRef]
Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., 2009, “The Electronic Properties of Graphene,” Rev. Mod. Phys., 81(1), pp. 109–162. [CrossRef]
Claussen, J. C., Franklin, A. D., Ul Haque, A., Porterfield, D. M., and Fisher, T. S., 2009, “Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks,” ACS Nano, 3(1), pp. 37–44. [CrossRef] [PubMed]
Claussen, J. C., Kim, S. S., Haque, A. U., Artiles, M. S., Porterfield, D. M., and Fisher, T. S., 2010, “Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes,” J. Diabetes Sci. Technol., 4(2), pp. 312–319. [CrossRef] [PubMed]
Bianco, S., Giorcelli, M., Musso, S., Castellino, M., Agresti, F., Khandelwal, A., Lo Russo, S., Kumar, M., Ando, Y., and Tagliaferro, A., 2010, “Hydrogen Adsorption in Several Types of Carbon Nanotubes,” J. Nanosci. Nanotechnol., 10(6), pp. 3860–3866. [CrossRef] [PubMed]
Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S., 1999, “Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science, 286, pp. 1127–1129. [CrossRef] [PubMed]
Choi, W., Lahiri, I., Seelaboyina, R., and Kang, Y. S., 2010, “Synthesis of Graphene and Its Applications: A Review,” Crit. Rev. Solid State Mater. Sci., 35(1), pp. 52–71. [CrossRef]
Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.-Y., Edgeworth, J., Li, X., Magnuson, C. W., Velamakanni, A., Piner, R. D., Kang, J., Park, J., and Ruoff, R. S., 2011, “Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy,” ACS Nano, 5(2), pp. 1321–1327. [CrossRef] [PubMed]
Kousalya, A. S., Kumar, A., Paul, R., Zemlyanov, D., and Fisher, T. S., 2013, “Graphene: An Effective Oxidation Barrier Coating for Liquid and Two-Phase Cooling Systems,” Corros. Sci., 69, pp. 5–10. [CrossRef]
Xiong, G., Hembram, K., Reifenberger, R., and Fisher, T. S., 2013, “MnO2-Coated Graphitic Petals for Supercapacitor Electrodes,” J. Power Sources, 227, pp. 254–259. [CrossRef]
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., 2009, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science (New York, N.Y.), 324(5932), pp. 1312–1314. [CrossRef] [PubMed]
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H., Hong, B. H., and Iijima, S., 2010, “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nat. Nanotechnol., 5(8), pp. 574–578. [CrossRef] [PubMed]
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., 2004, “Electric Field Effect in Atomically Thin Carbon Films,” Science (New York, N.Y.), 306, pp. 666–669. [CrossRef] [PubMed]
Iijima, S., 1991, “Helical Microtubules of Graphitic Carbon,” Lett. Nature, 354(6348), pp. 56–58. [CrossRef]
Journet, C., Maser, W. K., Bernier, P., and Loiseau, A., 1997, “Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique,” Lett. Nature, 388, pp. 20–22. [CrossRef]
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., 1995, “Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization,” Chem. Phys. Lett., 243, pp. 49–54. [CrossRef]
Ren, Z., Huang, Z., Xu, J., Wang, J., Bush, P., Siegal, M., and Provencio, P., 1998, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science (New York, N.Y.), 282(5391), pp. 1105–1107. [CrossRef] [PubMed]
Lee, J.-K., Yong Eun, K., Baik, Y.-J., Jun Cheon, H., Weon Rhyu, J., Jung Shin, T., and Park, J.-W., 2002, “The Large Area Deposition of Diamond by the Multi-Cathode Direct Current Plasma Assisted Chemical Vapor Deposition (DC PACVD) Method,” Diamond Relat. Mater., 11(3–6), pp. 463–466. [CrossRef]
Meyyappan, M., 2009, “A Review of Plasma Enhanced Chemical Vapour Deposition of Carbon Nanotubes,” J. Phys. D: Appl. Phys., 42(21), pp. 1–15. [CrossRef]
Meyyappan, M., Delzeit, L., Cassell, A., and Hash, D., 2003, “Carbon Nanotube Growth by PECVD: A Review,” Plasma Sources Sci. Technol., 12(2), pp. 205–216. [CrossRef]
Baliyan, A., Hayasaki, Y., Fukuda, T., Uchida, T., Nakajima, Y., Hanajiri, T., and Maekawa, T., 2013, “Precise Control of the Number of Walls of Carbon Nanotubes of a Uniform Internal Diameter,” J. Phys. Chem. C, 117(1), pp. 683–686. [CrossRef]
Shakhatov, V. A., De Pascale, O., and Capitelli, M., 2004, “Theoretical and Experimental CARS Rotational Distributions of H in a Radio-Frequency Capacitive Discharge Plasma,” Eur. Phys. J. D, 29(2), pp. 235–245. [CrossRef]
Butler, J. E., Mankelevich, Y. A., Cheesman, A., Ma, J., and Ashfold, M. N. R., 2009, “Understanding the Chemical Vapor Deposition of Diamond: Recent Progress,” J. Phys.: Condens. Matter, 21(36), p. 364201. [CrossRef] [PubMed]
Ma, J., Cheesman, A., Ashfold, M. N. R., Hay, K. G., Wright, S., Langford, N., Duxbury, G., and Mankelevich, Y. A., 2009, “Quantum Cascade Laser Investigations of CH4 and C2H2 Interconversion in Hydrocarbon/H2 Gas Mixtures During Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond,” J. Appl. Phys., 106(3), p. 033305. [CrossRef]
Lombardi, G., Hassouni, K., Stancu, G. D., Mechold, L., Röpcke, J., and Gicquel, A., 2005, “Study of an H2/CH4 Moderate Pressure Microwave Plasma Used for Diamond Deposition: Modelling and IR Tuneable Diode Laser Diagnostic,” Plasma Sources Sci. Technol., 14(3), pp. 440–450. [CrossRef]
Lombardi, G., Hassouni, K., Stancu, G.-D., Mechold, L., Ropcke, J., and Gicquel, A., 2005, “Modeling of Microwave Discharges of H2 Admixed With CH4 for Diamond Deposition,” J. Appl. Phys., 98(5), p. 053303. [CrossRef]
Hash, D. B., Bell, M. S., Teo, K. B. K., Cruden, B. A., Milne, W. I., and Meyyappan, M., 2005, “An Investigation of Plasma Chemistry for dc Plasma Enhanced Chemical Vapour Deposition of Carbon Nanotubes and Nanofibres,” Nanotechnology, 16(6), pp. 925–930. [CrossRef]
Bell, M. S., Lacerda, R. G., Teo, K. B. K., Rupesinghe, N. L., Amaratunga, G. A. J., Milne, W. I., and Chhowalla, M., 2004, “Plasma Composition During Plasma-Enhanced Chemical Vapor Deposition of Carbon Nanotubes,” Appl. Phys. Lett., 85(7), pp. 1137–1139. [CrossRef]
Kaminski, C. F., and Ewart, P., 1996, “Multiplex H2 CARS Thermometry in a Microwave Assisted Diamond CVD Plasma,” Appl. Opt., 64(3), pp. 103–109. [CrossRef]
Hassouni, K., Silva, F., and Gicquel, A., 2010, “Modeling of Diamond Deposition Microwave Cavity Generated Plasmas,” J. Phys. D: Appl. Phys., 43(15), pp. 1–45. [CrossRef]
Yamada, H., Chayahara, A., and Mokuno, Y., 2007, “Simplified Description of Microwave Plasma Discharge for Chemical Vapor Deposition of Diamond,” J. Appl. Phys., 101(6), pp. 1–6. [CrossRef]
Shakhatov, V. A., De Pascale, O., Capitelli, M., Hassouni, K., Lombardi, G., and Gicquel, A., 2005, “Measurement of Vibrational, Gas, and Rotational Temperatures of H2 in Radio Frequency Inductive Discharge Plasma by Multiplex Coherent Anti-Stokes Raman Scattering Spectroscopy Technique,” Phys. Plasmas, 12(2), pp. 1–10. [CrossRef]
Chen, K., Chuang, M., Penney, C. M., and Banholzer, W. F., 1992, “Temperature and Concentration Distribution of H2 and H Atoms in Hot-Filament Chemical-Vapor Deposition of Diamond,” J. Appl. Phys., 71(3), pp. 1485–1493. [CrossRef]
Yaglikci, S., Salgara, B., Soysal, F., and Cicek, B., 2011, “Investigation of Gas Phase Composition During Carbon Nanotube Production,” World Acad. Sci., Eng. Technol., 59, pp. 2107–2112.
Kornas, V., Schulz-von der Gathen, V., Bornemann, T., Dobele, H. F., and Prosz, G., 1991, “Temperature Measurements by H2-CARS in the Reactive Zone of a Plasma Test Reactor for Hydrocarbon Synthesis,” Plasma Chem. Plasma Process., 11(2), pp. 171–184. [CrossRef]
Umemoto, H., 2010, “Production and Detection of H Atoms and Vibrationally Excited H2 Molecules in CVD Processes,” Chem. Vapor Deposition, 16(10–12), pp. 275–290. [CrossRef]
Meichsner, J., Schmidt, M., Schneider, R., and Wagner, H.-E., eds., 2013, Nonthermal Plasma Chemistry and Physics, Taylor and Francis Group, Boca Raton, FL.
Hancock, R. D., Bertagnolli, K. E., and Lucht, R. P., 1997, “Nitrogen and Hydrogen CARS Temperature Measurements in a Hydrogen/Air Flame Using a Near-Adiabatic Flat-Flame Burner,” Combust. Flame, 109(3), pp. 323–331. [CrossRef]
Penney, C. M., St. Peters, R. L., and Lapp, M., 1974, “Absolute Rotational Raman Cross Sections for N2, O2, and CO2,” J. Opt. Soc. Am., 64(5), pp. 712–716. [CrossRef]
Druet, S. A. J., and Taran, J. P. E., 1981, “CARS Spectroscopy,” Prog. Quantum Electron., 7(1), pp. 1–72. [CrossRef]
Lucht, R. P., 1987, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett., 12(2), pp. 78–80. [CrossRef] [PubMed]
Banwell, C. N., 1972, Fundamentals of Molecular Spectroscopy, 2nd ed., McGraw-Hill Book Company, London.
Laurendeau, N. M., 2005, Statistical Thermodynamics: Fundamentals and Applications. Cambridge University Press, New York.
Eckbreth, A. C., 1996, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Gordon and Breach Science Publishers SA, Amsterdam B. V.
Maschmann, M. R., Amama, P. B., Goyal, A., Iqbal, Z., Gat, R., and Fisher, T. S., 2006, “Parametric Study of Synthesis Conditions in Plasma-Enhanced CVD of High-Quality Single-Walled Carbon Nanotubes,” Carbon, 44(1), pp. 10–18. [CrossRef]
Das, A., Chakraborty, B., and Sood, A. K., 2008, “Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects,” Bull. Mater. Sci., 31(3), pp. 579–584. [CrossRef]
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., 2006, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett., 97(18), p. 187401. [CrossRef] [PubMed]
Palmer, R., 1989, “The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information,” Sandia National Laboratories, Report No. SAND89-8206.
Lucht, R. P., and Farrow, R. L., 1989, “Saturation Effects in Coherent Anti-Stokes Raman Scattering Spectroscopy of Hydrogen,” J. Opt. Soc. Am. B, 6(12), pp. 2313–2326. [CrossRef]
Cola, B. A., Xu, J., Cheng, C., Xu, X., Fisher, T. S., and Hu, H., 2007, “Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,” J. Appl. Phys., 101(5), pp. 1–9. [CrossRef]
Cola, B. A., Xu, X., and Fisher, T. S., 2007, “Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material,” Appl. Phys. Lett., 90(9), pp. 1–3. [CrossRef]
Kumar, A., Voevodin, A., Zemlyanov, D., Zakharov, D., and Fisher, T., 2012, “Rapid Synthesis of Few-Layer Graphene Over Cu Foil,” Carbon, 50(4), pp. 1546–1553. [CrossRef]
Bhuvana, T., Kumar, A., Sood, A., Gerzeski, R. H., Hu, J., Bhadram, V. S., Narayana, C., and Fisher, T. S., 2010, “Contiguous Petal-Like Carbon Nanosheet Outgrowths From Graphite Fibers by Plasma CVD,” ACS Appl. Mater. Interfaces, 2(3), pp. 644–648. [CrossRef] [PubMed]
Xiong, G., Hembram, K., Zakharov, D. N., Reifenberger, R., and Fisher, T. S., 2012, “Controlled Thin Graphitic Petal Growth on Oxidized Silicon,” Diamond Relat. Mater., 27–28, pp. 1–9. [CrossRef]
Chu, H. N., Den HartogE. A., Lefkow, A. R., Jacobs, J., Anderson, L. W., Lagally, M. G., and Lawler, J. E., 1991, “Measurements of the Gas Kinetic Temperature in a CH4-H2 Discharge During the Growth of Diamond,” Phys. Rev. A, 44(6), pp. 3796–3803. [CrossRef] [PubMed]
Fridman, A., 2008, Plasma Chemistry, 1st ed., Cambridge University Press, Boca Raton, FL. [CrossRef]


Grahic Jump Location
Fig. 1

Illustration of plasma bulk over molybdenum puck and plasma sheath boundary region

Grahic Jump Location
Fig. 2

Schematic diagram of CARS beams and energy diagram

Grahic Jump Location
Fig. 3

Population distribution for the rotational energy mode of H2. Intensity alteration in the rotational fine structure is due to nuclear spin statistics.

Grahic Jump Location
Fig. 4

Schematic diagram of the microwave plasma chemical vapor deposition reactor at two stage positions: (a) susceptor stage ready to accept substrate and (b) the susceptor stage raised to 53 mm for the ignition of the plasma

Grahic Jump Location
Fig. 5

Raman spectrum from two positions on the top surface of the copper disk directly exposed to the plasma

Grahic Jump Location
Fig. 6

Raman spectrum from the bottom surface of the copper disk

Grahic Jump Location
Fig. 7

Schematic diagram of the CARS system

Grahic Jump Location
Fig. 8

Theoretical fit to room-temperature spectrum. CARSFT code converges to a temperature of 272 K.

Grahic Jump Location
Fig. 9

Theoretical fit to a H2 spectrum from plasma. CARSFT code converges to a temperature of 1341 K.

Grahic Jump Location
Fig. 10

Intensity of H2 Q(1) line as a function of beam intensity. The Stokes beam energy was 4.8 mJ/pulse.

Grahic Jump Location
Fig. 11

Rotational temperature of H2 at 10 Torr with varying plasma generator powers, with and without CH4 (10 sccm)

Grahic Jump Location
Fig. 12

Rotational temperature of H2 at 30 Torr with varying plasma generator powers, with and without CH4 (10 sccm)

Grahic Jump Location
Fig. 13

H2 rotational temperature distributions at 10 Torr, 400 W with and without CH4 and N2



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In