Research Papers

Scalable Fabrication of Low Elastic Modulus Polymeric Nanocarriers With Controlled Shapes for Diagnostics and Drug Delivery

[+] Author and Article Information
Vikramjit Singh

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712-1591
e-mail: viks@utexas.edu

Rachit Agarwal

Department of Biomedical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332-0535
e-mail: rachitbly@gmail.com

Patrick Jurney

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712-1591
e-mail: jurney4@gmail.com

Kervin Marshall

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712-1591
e-mail: kervinscott@gmail.com

Krishnendu Roy

Department of Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30332-0535
e-mail: krish.roy@gatech.edu

Li Shi

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712-1591
e-mail: lishi@mail.utexas.edu

S.V. Sreenivasan

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712-1591
e-mail: sv.sreeni@mail.utexas.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received April 7, 2014; final manuscript received October 21, 2014; published online November 20, 2014. Assoc. Editor: Nicholas Fang.

J. Micro Nano-Manuf 3(1), 011002 (Mar 01, 2015) (8 pages) Paper No: JMNM-14-1024; doi: 10.1115/1.4028896 History: Received April 07, 2014; Revised October 21, 2014; Online November 20, 2014

A new process, decoupled functional imprint lithography (D-FIL), is presented for fabricating low elastic modulus polymeric nanocarriers possessing Young's modulus of bulk material as low as sub-1 MPa. This method is employed to fabricate sub-50 nm diameter cylinders with >3:1 aspect ratio and other challenging shapes from low elastic modulus polymers such as N-isopropylacrylamide (NIPAM) and poly(ethylene glycol) di-acrylate (PEGDA), possessing Young's modulus of bulk material <10 MPa which is cannot otherwise be imprinted in similar size and pitch using existing imprint techniques. Standard imprint lithography polymers have Young's modulus >1 GPa, and so these polymers used in nanocarrier fabrication in comparison have very low elastic modulus. Monodispersed, shape- and size-specific nanocarriers composed of NIPAM with material elastic modulus of <1 MPa have been fabricated and show thermal responsive behavior at the lower critical solubility temperature (LCST) of ∼32 °C. In addition, re-entrant shaped nanocarriers composed of PEGDA with elastic modulus <10 MPa are also fabricated. Nanocarriers fabricated from PEGDA are shown with model imaging agent and anticancer drug (Doxorubicin) encapsulated in as small as 50 nm cylindrical nanocarriers.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Davis, M. E., Chen, Z., and Shin, D. M., 2008, “Nanoparticle Therapeutics: An Emerging Treatment Modality for Cancer,” Nat. Rev. Drug Discovery, 7(9), pp. 771–782. [CrossRef]
Hughes, G. A., 2005, “Nanostructure-Mediated Drug Delivery,” Nanomedicine, 1(1), pp. 22–30. [CrossRef] [PubMed]
Panyam, J., and Labhasetwar, V., 2003, “Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue,” Adv. Drug Delivery Rev., 55(3), pp. 329–347. [CrossRef]
Petros, R. A., and DeSimone, J. M., 2010, “Strategies in the Design of Nanoparticles for Therapeutic Applications,” Nat. Rev. Drug Discovery, 9(8), pp. 615–627. [CrossRef]
Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., Terada, Y., Kano, M. R., Miyazono, K., Uesaka, M., Nishiyama, N., and Kataoka, K., 2011, “Accumulation of Sub-100 nm Polymeric Micelles in Poorly Permeable Tumours Depends on Size,” Nat. Nanotechnol., 6(12), pp. 815–823. [CrossRef] [PubMed]
Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., and Discher, D. E., 2007, “Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery,” Nat. Nanotechnol., 2(4), pp. 249–255. [CrossRef] [PubMed]
He, C., Hu, Y., Yin, L., Tang, C., and Yin, C., 2010, “Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles,” Biomaterials, 31(13), pp. 3657–3666. [CrossRef] [PubMed]
Merkel, T. J., Jones, S. W., Herlihy, K. P., Kersey, F. R., Shields, A. R., Napier, M., Luft, J. C., Wu, H., Zamboni, W. C., Wang, A. Z., Bear, J. E., and DeSimone, J. M., 2011, “Using Mechanobiological Mimicry of Red Blood Cells to Extend Circulation Times of Hydrogel Microparticles,” Proc. Natl. Acad. Sci. USA, 108(2), pp. 586–591. [CrossRef]
Champion, J. A., and Mitragotri, S., 2006, “Role of Target Geometry in Phagocytosis,” Proc. Natl. Acad. Sci. USA, 103(13), pp. 4930–4934. [CrossRef]
Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., and DeSimone, J. M., 2008, “The Effect of Particle Design on Cellular Internalization Pathways,” Proc. Natl. Acad. Sci. USA, 105(33), pp. 11613–11618. [CrossRef]
Rejman, J., Oberle, V., Zuhorn, I. S., and Hoekstra, D., 2004, “Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis,” Biochem. J., 377(1) pp. 159–169. [CrossRef] [PubMed]
Yang, K., and Ma, Y.-Q., 2010, “Computer Simulation of the Translocation of Nanoparticles With Different Shapes Across a Lipid Bilayer,” Nat. Nanotechnol., 5(8), pp. 579–583. [CrossRef] [PubMed]
Agarwal, R., Singh, V., Jurney, P., Shi, L., Sreenivasan, S. V., and Roy, K., 2013, “Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs Over Nanorods and Use Shape-Specific Uptake Mechanisms,” Proc. Natl. Acad. Sci., 110(43), pp. 17247–17252. [CrossRef]
Moriyama, K., and Yui, N., 1996, “Regulated Insulin Release From Biodegradable Dextran Hydrogels Containing Poly(Ethylene Glycol),” J. Controlled Release, 42(3), pp. 237–248. [CrossRef]
Ilium, L., Davis, S. S., Wilson, C. G., Thomas, N. W., Frier, M., and Hardy, J. G., 1982, “Blood Clearance and Organ Deposition of Intravenously Administered Colloidal Particles. The Effects of Particle Size, Nature and Shape,” Int. J. Pharm., 12(2–3), pp. 135–146. [CrossRef]
Decuzzi, P., Pasqualini, R., Arap, W., and Ferrari, M., 2009, “Intravascular Delivery of Particulate Systems: Does Geometry Really Matter?,” Pharm. Res., 26(1), pp. 235–243. [CrossRef] [PubMed]
Matsumura, Y., and Maeda, H., 1986, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res., 46(12 Pt 1), pp. 6387–6392. [PubMed]
Decuzzi, P., Lee, S., Bhushan, B., and Ferrari, M., 2005, “A Theoretical Model for the Margination of Particles Within Blood Vessels,” Ann. Biomed. Eng., 33(2), pp. 179–190. [CrossRef] [PubMed]
Shah, S., Liu, Y., Hu, W., and Gao, J., 2011, “Modeling Particle Shape-Dependent Dynamics in Nanomedicine,” J. Nanosci. Nanotechnol., 11(2), pp. 919–928. [CrossRef] [PubMed]
Safeukui, I., Correas, J.-M., Brousse, V., Hirt, D., Deplaine, G., Mulé, S., Lesurtel, M., Goasguen, N., Sauvanet, A., Couvelard, A., Kerneis, S., Khun, H., Vigan-Womas, I., Ottone, C., Molina, T. J., Tréluyer, J.-M., Mercereau-Puijalon, O., Milon, G., David, P. H., and Buffet, P. A., 2008, “Retention of Plasmodium falciparum Ring-Infected Erythrocytes in the Slow, Open Microcirculation of the Human Spleen,” Blood, 112(6), pp. 2520–2528. [CrossRef] [PubMed]
Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., and Kostarelos, K., 2006, “Tissue Biodistribution and Blood Clearance Rates of Intravenously Administered Carbon Nanotube Radiotracers,” Proc. Natl. Acad. Sci. USA, 103(9), pp. 3357–3362. [CrossRef]
Mitragotri, S., and Lahann, J., 2009, “Physical Approaches to Biomaterial Design,” Nat. Mater., 8(1), pp. 15–23. [CrossRef] [PubMed]
Agarwal, R., Singh, V., Jurney, P., Shi, L., Sreenivasan, S. V., and Roy, K., 2012, “Scalable Imprinting of Shape-Specific Polymeric Nanocarriers Using a Release Layer of Switchable Water Solubility,” ACS Nano, 6(3), pp. 2524–2531. [CrossRef] [PubMed]
Glangchai, L. C., Caldorera-Moore, M., Shi, L., and Roy, K., 2008, “Nanoimprint Lithography Based Fabrication of Shape-Specific, Enzymatically-Triggered Smart Nanoparticles,” J. Controlled Release, 125(3), pp. 263–272. [CrossRef]
Rolland, J. P., Hagberg, E. C., Denison, G. M., Carter, K. R., and De Simone, J. M., 2004, “High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies,” Angew. Chem. Int. Ed., 43(43), pp. 5796–5799. [CrossRef]
Kim, K.-D., Kwon, H.-J., Choi, D.-G., Jeong, J.-H., and Lee, E.-S., 2008, “Resist Flow Behavior in Ultraviolet Nanoimprint Lithography as a Function of Contact Angle With Stamp and Substrate,” Jpn. J. Appl. Phys., 47(11), pp. 8648–8651. [CrossRef]
Sreenivasan, S. V., Choi, J., Schumaker, P., and Xu, F., 2010, “Status of UV Lithography for Nanoscale Manufacturing,” Handbook of Nanofabriation, G. P.Wiederrecht, ed., Elsevier BV, Amsterdam, The Netherlands, pp. 149–182.
Xu, F., Stacey, N. A., Watts, M., Truskett, V., McMackin, I., Choi, J., Schumaker, P., Thompson, E., Babbs, D., Sreenivasa, S. V., Willson, G. C., and Shumaker, N., 2004, “Development of Imprint Materials for the Step and Flash Imprint Lithography Process,” Proceedings of SPIE, Vol. 5374. [CrossRef]
Edsberg, L. E., Mates, R. E., Baier, R. E., and Lauren, M., 1999, “Mechanical Characteristics of Human Skin Subjected to Static Versus Cyclic Normal Pressures,” J. Rehab. Res. Dev., 36(2), pp. 133–141.
Subramanian, A., and Lin, H.-Y., 2005, “Crosslinked Chitosan: Its Physical Properties and the Effects of Matrix Stiffness on Chondrocyte Cell Morphology and Proliferation,” J. Biomed. Mater. Res. Part A, 75A(3), pp. 742–753. [CrossRef]
Doshi, N., Zahr, A. S., Bhaskar, S., Lahann, J., and Mitragotri, S., 2009, “Red Blood Cell-Mimicking Synthetic Biomaterial Particles,” Proc. Natl. Acad. Sci., 106(51), pp. 21495–21499. [CrossRef]
Hochmuth, R. M., Mohandas, N., and Blackshear, J. P. L., 1973, “Measurement of the Elastic Modulus for Red Cell Membrane Using a Fluid Mechanical Technique,” Biophys. J., 13(8), pp. 747–762. [CrossRef] [PubMed]
Colburn, M., Johnson, S., Stewart, M., Damle, S., Bailey, T., Choi, B., Schumaker, P., Thompson, E., Babbs, D., Sreenivasan, S. V., Willson, C. G., and Schumaker, N., 1999, “Step and Flash Imprint Lithography: A New Approach to High Resolution Patterning,” Proceedings of SPIE, Vol. 3676(I), pp. 379–389. [CrossRef]
Gratton, S. E. A., Pohlhaus, P. D., Lee, J., Guo, J., Cho, M. J., and DeSimone, J. M., 2007, “Nanofabricated Particles for Engineered Drug Therapies: A Preliminary Biodistribution Study of PRINTTM Nanoparticles,” J. Controlled Release, 121(1–2), pp. 10–18. [CrossRef]
Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R., 2006, “Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology,” Adv. Mater., 18(11), pp. 1345–1360. [CrossRef]
Guo, D., Xie, G., and Luo, J., 2014, “Mechanical Properties of Nanoparticles: Basics and Applications,” J. Phys. D: Appl. Phys., 47(1), p. 013001. [CrossRef]
Wampler, H. P., and Ivanisevic, A., 2009, “Nanoidentation of Gold Nanoparticles Fucntionalized With Protiens,” Micron, 40(4), pp. 444–448. [CrossRef] [PubMed]
Ebenstein, D. M., and Pruitt, L. A., 2006, “Nanoidentation of Biological Materials,” Nanotoday, 1(3), pp. 26–33. [CrossRef]
Glassmaker, N. J., Jagota, A., Hui, Y.-C., and Kim, J., 2004, “Design of Biomimetic Fibrillar Interfaces: 1. Making Contact,” J. R. Soc. Interface, 1(1), pp. 23–33. [CrossRef] [PubMed]
Lee, T. W., Mitrofanov, O., and Hsu, J. W. P., 2005, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater., 15(10), pp. 1683–1688. [CrossRef]
Roca-Cusachs, P., Rico, F., Martínez, E., Toset, J., Farré, R., and Navajas, D., 2005, “Stability of Microfabricated High Aspect Ratio Structures in Poly(dimethylsiloxane),” Langmuir, 21(12), pp. 5542–5548. [CrossRef] [PubMed]
Tanaka, T., Morigami, M., and Atoda, N., 1999, “Mechanism of Resist Pattern Collapse During Development Process,” Jpn. J. Appl. Phys., 32(Part 1, No. 12B), pp. 6059–6064. [CrossRef]
Zhang, Y., Lo, C.-W., Taylor, J. A., and Yang, S., 2006, “Replica Molding of High-Aspect-Ratio Polymeric Nanopillar Arrays With High Fidelity,” Langmuir, 22(20), pp. 8595–8601. [CrossRef] [PubMed]
Cross, G. L. W., O'Connell, B., Pethica, J. B., and Oliver, W., 2003, “Mechanical Aspects of Nanoimprint Patterning,” 3rd IEEE Conference on Nanotechnology, Vol. 2, San Francisco, CA, Aug. 12–14, pp. 494–497. [CrossRef]
Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., and DeSimone, J. M., 2005, “Direct Fabrication and Harvesting of Monodisperse, Shape-Specific Nanobiomaterials,” J. Am. Chem. Soc., 127(28), pp. 10096–10100. [CrossRef] [PubMed]
Buyukserin, F., Aryal, M., Gao, J., and Hu, W., 2009, “Fabrication of Polymeric Nanorods Using Bilayer Nanoimprint Lithography,” Small, 5(14), pp. 1632–1636. [CrossRef] [PubMed]
Acharya, G., Shin, C. S., McDermott, M., Mishra, H., Park, H., Kwon, I. C., and Park, K., 2010, “The Hydrogel Template Method for Fabrication of Homogeneous Nano/Microparticles,” J. Controlled Release, 141(3), pp. 314–319. [CrossRef]
Ho, C. C., Keller, A., Odell, J. A., and Ottewill, R. H., 1993, “Preparation of Monodisperse Ellipsoidal Polystyrene Particles,” Colloid Polym. Sci., 271(5), pp. 469–479. [CrossRef]
Deguchi, K., Takeuchi, N., and Shimizu, A., 2002, “Evaluation of Pressure Uniformity Using a Pressure-Sensitive Film and Calculation of Wafer Distortions Caused by Mold Press in Imprint Lithography,” Jpn. J. Appl. Phys., 41, pp. 4178–4181. [CrossRef]
Krebs, F. C., 2008, “Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques,” Sol. Energy Mater. Sol. Cells, 93(4), pp. 394–412. [CrossRef]
Flamm, D. L., and Herb, G. K., 1989, “Plasma Etching Technology—An Overview,” Plasma Etching an Introduction, D. M.Manos and D. L.Fann, Academic Press, San Diego, CA, pp. 2–87, Chap. 1.
Caldorera-Moore, M., Kang, M. K., Moore, Z., Singh, V., Sreenivasan, S. V., Shi, L., Huang, R., and Roy, K., 2011, “Swelling Behavior of Nanoscale, Shape- and Size-Specific, Hydrogel Particles Fabricated Using Imprint Lithography,” Soft Matter, 7(6), pp. 2879–2887. [CrossRef]
Hui, C. Y., Jagota, A., Lin, Y. Y., and Kramer, E. J., 2002, “Constraints on Microcontact Imprinting Imposed by Stamp Deformation,” Langmuir, 18(4), pp. 1394–1407. [CrossRef]


Grahic Jump Location
Fig. 1

SEM and AFM images of sub-50 nm diameter NIPAM and PEGDA based nanopillars imprinted using J-FIL: (a) Top-down SEM of nanopillars using standard J-FIL resist with high pattern density template with holes having d = 36 nm, h = 72 nm, and pitch, p = 72 nm; (b) top-down; (c) 15 deg angled cross section SEM of collapsed nanopillars consisting of PEGDA 200 Da in DMSO using the same template as mentioned in (a); (d) AFM of collapsed nanopillars consisting of NIPAM; (e) bad shape retention of PEGDA 700 Da imprints using J-FIL due to elastic relaxation of an imprint using PEGDA 700 Da after imprinting using a template having holes with diameter d = 120 nm, height h = 80 nm, and pitch p = 240 nm; and (f) Nanoimprint of standard J-FIL resist using the same template as (d) showing desired nanopillar geometry.

Grahic Jump Location
Fig. 2

D-FIL process for fabricating nanocarriers in drug delivery applications: (a) illustration and SEM of mechanically stable hole-tone imprint (40 nm diameter holes with 100 nm pitch) over SiOx masked PVA layer on a Si substrate; (b) break-through etch into the SiOx masking layer; (c) transfer of etched pattern with varying depths as shown in SEM images (c1) AR = 1:1, (c2) AR = 2:1, and (c3) AR > 3:1; (d) imprint planarization of patterned PVA layer; (e) removal of top residual layer; and (f) dissolution of PVA layer in DI water to harvest nanocarriers.

Grahic Jump Location
Fig. 3

Illustration depitcting imprinting issues during demolding in conventional imprinting processes (a), compared to the D-FIL process shown in (b)

Grahic Jump Location
Fig. 4

Fabrication of PEGDA nanocarriers using D-FIL: (a) SEM image showing transfer of an imprint pattern (d = 155 nm, h = 160 nm, square array pattern density pitch p = 200 nm) into the PVA layer; (b) SEM image showing imprint planarization of UV cured PEGDA based aqueous resist over the patterned PVA layer; (c) SEM image after RIE etch removal of the top residual interconnecting layer creating isolated PEGDA nanocarriers (d = 155 nm, h = 160 nm) inside the patterned PVA; (d) fluorescence image of released PEGDA nanocarriers; (e) and (f) SEM image of released nanocarriers; and (g) large area (80 mm diameter) imprint planarization of patterned PVA using imprint lithography over a 6 in. Si wafer.

Grahic Jump Location
Fig. 5

SEM and fluorescence images of PEGDA 400 Da nanocarrier: (a) SEM image of imprint planarized isolated sub-50 nm diameter cylindrical nanocarriers with aspect ratio >3:1; (b) SEM image and (c) fluorescence microscopy image of released sub-50 nm diameter cylindrical nanocarriers with aspect ratio >3:1; (d) SEM image of imprint planarized isolated sub-200 nm re-entrant barrel shaped nanocarriers; (e) SEM image and (f) fluorescence microscopy image of sub-200 nm re-entrant barrel shaped nanocarrier; (g) SEM image of imprint planarized 50 nm cylindrical nanocarriers; (h) SEM image; and (i) Fluorescence microscopy image of released 50 nm PEGDA nanocarriers showing encapsulation of Doxorubicin post fabrication and release.

Grahic Jump Location
Fig. 6

NIPAM nanocarriers fabricated using D-FIL: (a) 40 nm diameter cylinders with AR > 3:1 and (b) 100 nm diameter cylinders with AR = 2:1



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In