Research Papers

The Effect of Water Droplet Size, Temperature, and Impingement Velocity on Gold Wettability at the Nanoscale

[+] Author and Article Information
Jhonatam Cordeiro

Department of Industrial and Systems
North Carolina A&T State University,
419 McNair Hall,
1601, East Market Street,
Greensboro, NC 27411
e-mail: jcrodrig@aggies.ncat.edu

Salil Desai

Department of Industrial and Systems
North Carolina A&T State University,
423 McNair Hall,
1601, East Market Street,
Greensboro, NC 27411
e-mail: sdesai@ncat.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received January 20, 2017; final manuscript received May 17, 2017; published online June 13, 2017. Assoc. Editor: Ulf Engel.

J. Micro Nano-Manuf 5(3), 031008 (Jun 13, 2017) (8 pages) Paper No: JMNM-17-1004; doi: 10.1115/1.4036891 History: Received January 20, 2017; Revised May 17, 2017

Molecular dynamics (MD) simulations are performed to investigate the wettability of gold substrate interacting with nanosized droplets of water. The effects of droplet size, temperature variation, and impingement velocity are evaluated using molecular trajectories, dynamic contact angle, spread ratios, radial distribution function (RDF), and molecular diffusion graphs. Droplets of 4 nm and 10 nm were simulated at 293 K and 373 K, respectively. Stationary droplets were compared to droplets impinging the substrate at 100 m/s. The simulations were executed on high-end workstations equipped with NVIDIA® Tesla graphical processing units (GPUs). Results show that smaller droplets have a faster stabilization time and lower contact angles than larger droplets. With an increase in temperature, stabilization time gets faster, and the molecular diffusion from the water droplet increases. Higher temperatures also increase the wettability of the gold substrate, wherein droplets present a lower contact angle and a higher spread ratio. Droplets that impact the substrate at a higher impingement velocity converge to the same contact angle as stationary droplets. At higher temperatures, the impingement velocities accelerate the diffusion of water molecules into vapor. It was revealed that impingement velocities do not influence stabilization times. This research establishes relationships among different process parameters to control the wettability of water on gold substrates which can be explored to study several nanomanufacturing processes.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Palinkas, G. , Kalman, E. , and Kovacs, P. , 1977, “ Liquid Water: II. Experimental Atom Pair-Correlation Functions of Liquid D2O,” Mol. Phys., 34(2), pp. 525–537. [CrossRef]
Kropman, M. , and Bakker, H. , 2001, “ Dynamics of Water Molecules in Aqueous Solvation Shells,” Science, 291(5511), pp. 2118–2120. [CrossRef] [PubMed]
Narten, A. , Thiessen, W. , and Blum, L. , 1982, “ Atom Pair Distribution Functions of Liquid Water at 25 C From Neutron Diffraction,” Science, 217(4564), pp. 1033–1034. [CrossRef] [PubMed]
Pugliano, N. , and Saykally, R. , 1992, “ Measurement of the ν8 Intermolecular Vibration of (D2O)2 by Tunable Far Infrared Laser Spectroscopy,” J. Chem. Phys., 96(3), pp. 1832–1839. [CrossRef]
Banks, D. P. , Grivas, C. , Mills, J. D. , Eason, R. W. , and Zergioti, I. , 2006, “ Nanodroplets Deposited in Microarrays by Femtosecond Ti: Sapphire Laser-Induced Forward Transfer,” Appl. Phys. Lett., 89(19), p. 193107. [CrossRef]
Sutanto, E. , Shigeta, K. , Kim, Y. , Graf, P. , Hoelzle, D. , Barton, K. , Alleyne, A. , Ferreira, P. , and Rogers, J. , 2012, “ A Multimaterial Electrohydrodynamic Jet (E-Jet) Printing System,” J. Micromech. Microeng., 22(4), p. 045008. [CrossRef]
Desai, S. , Esho, T. , and Kaware, R. , 2012, “ Experimental Investigation of Controlled Microdroplet Evaporation Toward Scalable Micro/Nanomanufacturing,” IIE Trans., 44(2), pp. 155–162. [CrossRef]
Bar-Cohen, A. , Arik, M. , and Ohadi, M. , 2006, “ Direct Liquid Cooling of High Flux Micro and Nano Electronic Components,” Proc. IEEE, 94(8), pp. 1549–1570. [CrossRef]
Abgrall, P. , and Nguyen, N. T. , 2008, “ Nanofluidic Devices and Their Applications,” Anal. Chem., 80(7), pp. 2326–2341. [CrossRef] [PubMed]
Matsuoka, T. , Kim, B. C. , Huang, J. , Douville, N. J. , Thouless, M. , and Takayama, S. , 2012, “ Nanoscale Squeezing in Elastomeric Nanochannels for Single Chromatin Linearization,” Nano Lett., 12(12), pp. 6480–6484. [CrossRef] [PubMed]
Cordeiro, J. , and Desai, S. , 2016, “ The Leidenfrost Effect at the Nanoscale,” ASME J. Micro Nano Manuf., 4(4), p. 041001. [CrossRef]
Hirvi, J. T. , and Pakkanen, T. A. , 2006, “ Molecular Dynamics Simulations of Water Droplets on Polymer Surfaces,” J. Chem. Phys., 125(14), p. 144712. [CrossRef] [PubMed]
Werder, T. , Walther, J. H. , Jaffe, R. , Halicioglu, T. , and Koumoutsakos, P. , 2003, “ On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes,” J. Phys. Chem. B, 107(6), pp. 1345–1352. [CrossRef]
Watanabe, Y. , Shibuta, Y. , and Suzuki, T. , 2010, “ A Molecular Dynamics Study of Thermodynamic and Kinetic Properties of Solid-Liquid Interface for Bcc Iron,” ISIJ Int., 50(8), pp. 1158–1164. [CrossRef]
Young, T. , 1805, “ An Essay on the Cohesion of Fluids,” Philos. Trans. R. Soc. London, 95(0), pp. 65–87. [CrossRef]
Hong, S. D. , Ha, M. Y. , and Balachandar, S. , 2009, “ Static and Dynamic Contact Angles of Water Droplet on a Solid Surface Using Molecular Dynamics Simulation,” J. Colloid Interface Sci., 339(1), pp. 187–195. [CrossRef] [PubMed]
Ztekin, Y. , Olakolu, K. , and Zge, S. , 2012, “ A Molecular Dynamics Study on Au,” Molecular Dynamics—Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang , ed., InTech, Rijeka, Croatia, Chap. 10.
Wu, C.-D. , Kuo, L.-M. , Lin, S.-J. , Fang, T.-H. , and Hsieh, S.-F. , 2012, “ Effects of Temperature, Size of Water Droplets, and Surface Roughness on Nanowetting Properties Investigated Using Molecular Dynamics Simulation,” Comput. Mater. Sci., 53(1), pp. 25–30. [CrossRef]
Freund, J. B. , 2003, “ The Atomic Detail of a Wetting/de-Wetting Flow,” Phys. Fluids, 15(5), pp. 33–36. [CrossRef]
Ju, S.-P. , Yang, S.-H. , and Liao, M.-L. , 2006, “ Study of Molecular Behavior in a Water Nanocluster: Size and Temperature Effect,” J. Phys. Chem. B, 110(18), pp. 9286–9290. [CrossRef] [PubMed]
Desai, S. , Kaware, R. D. , and Rodrigues, J. , 2014, “ Temperature-Dependent Wettability on Silicon Dioxide and Silicon Nitride Substrates,” J. Nanoeng. Nanomanuf., 4(3), pp. 237–246. [CrossRef]
Coursey, J. S. , Kim, J. , and Kiger, K. T. , 2007, “ Spray Cooling of High Aspect Ratio Open Microchannels,” ASME J. Heat Transfer, 129(8), pp. 1052–1059. [CrossRef]
Nelson, M. T. , Humphrey, W. , Gursoy, A. , Dalke, A. , Kalé, L. V. , Skeel, R. D. , and Schulten, K. , 1996, “ NAMD: A Parallel, Object-Oriented Molecular Dynamics Program,” Int. J. High Perform. Comput. Appl., 10(4), pp. 251–268. [CrossRef]
Humphrey, W. , Dalke, A. , and Schulten, K. , 1996, “ VMD: Visual Molecular Dynamics,” J. Mol. Graphics, 14(1), pp. 33–38. [CrossRef]
Foloppe, N. , and MacKerell, A. D., Jr. , 2000, “ All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data,” J. Comput. Chem., 21(2), pp. 86–104. [CrossRef]
Wang, J. , Wolf, R. M. , Caldwell, J. W. , Kollman, P. A. , and Case, D. A. , 2004, “ Development and Testing of a General Amber Force Field,” J. Comput. Chem., 25(9), pp. 1157–1174. [CrossRef] [PubMed]
Phillips, J. C. , Braun, R. , Wang, W. , Gumbart, J. , Tajkhorshid, E. , Villa, E. , Chipot, C. , Skeel, R. D. , Kale, L. , and Schulten, K. , 2005, “ Scalable Molecular Dynamics With NAMD,” J. Comput. Chem., 26(16), pp. 1781–1802. [CrossRef] [PubMed]
Stone, J. E. , Hardy, D. J. , Ufimtsev, I. S. , and Schulten, K. , 2010, “ GPU-Accelerated Molecular Modeling Coming of Age,” J. Mol. Graphics Modell., 29(2), pp. 116–125. [CrossRef]
Kindratenko, V. V. , Enos, J. J. , Shi, G. , Showerman, M. T. , Arnold, G. W. , Stone, J. E. , Phillips, J. C. , and Hwu, W.-M. , 2009, “ GPU Clusters for High-Performance Computing,” IEEE International Conference on Cluster Computing and Workshops (CLUSTER), New Orleans, LA, Aug. 31–Sept. 4, pp. 1–8.
Braun, R. , Sarikaya, M. , and Schulten, K. , 2002, “ Genetically Engineered Gold-Binding Polypeptides: Structure Prediction and Molecular Dynamics,” J. Biomater. Sci., 13(7), pp. 747–757. [CrossRef]
VandeVondele, J. , Mohamed, F. , Krack, M. , Hutter, J. , Sprik, M. , and Parrinello, M. , 2005, “ The Influence of Temperature and Density Functional Models in Ab Initio Molecular Dynamics Simulation of Liquid Water,” J. Chem. Phys., 122(1), p. 014515. [CrossRef]
Park, J.-Y. , Ha, M.-Y. , Choi, H.-J. , Hong, S.-D. , and Yoon, H.-S. , 2011, “ A Study on the Contact Angles of a Water Droplet on Smooth and Rough Solid Surfaces,” J. Mech. Sci. Technol., 25(2), pp. 323–332. [CrossRef]


Grahic Jump Location
Fig. 1

Four nanometer and 10 nm droplets models on top of a gold substrate

Grahic Jump Location
Fig. 2

Progression of 4 nm and 10 nm droplets with impingement velocity of 100 m/s

Grahic Jump Location
Fig. 3

(a) Water model with vapor periphery and (b) density separation contour

Grahic Jump Location
Fig. 4

RMSD of nanodroplets at 293 K

Grahic Jump Location
Fig. 5

RMSD of nanodroplets at 373 K

Grahic Jump Location
Fig. 6

Spread ratio of 4 nm and 10 nm droplets

Grahic Jump Location
Fig. 7

Contact angles of 4 nm and 10 nm droplets

Grahic Jump Location
Fig. 8

RDF of the 10 nm droplet at different ambient conditions

Grahic Jump Location
Fig. 9

Contact angles of 10 nm droplets at 293 K and 373 K

Grahic Jump Location
Fig. 10

Spread ratio of a 10 nm droplet at 293 K and 373 K

Grahic Jump Location
Fig. 11

Diffusion of atoms in the (a) 4 nm and (b) 10 nm droplet

Grahic Jump Location
Fig. 12

Diffusion of atoms in the (a) 4 nm and (b) 10 nm droplet at 373 K

Grahic Jump Location
Fig. 13

Dynamic contact angles for (a) 4 nm and (b) 10 nm droplets at 293 K

Grahic Jump Location
Fig. 14

Spread ratios for (a) 4 nm and (b) 10 nm at 293 K



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In