Research Papers

Electrohydrodynamic Casting Bismuth Telluride Microparticle-Loaded Carbon Nanofiber Composite Material With Multiple Sensing Functions

[+] Author and Article Information
Yong X. Gan

Department of Mechanical Engineering,
California State Polytechnic University Pomona,
3801 W Temple Avenue,
Pomona, CA 91768
e-mail: yxgan@cpp.edu

Ann D. Chen, Kevin R. Anderson

Department of Mechanical Engineering,
California State Polytechnic University Pomona,
3801 W Temple Avenue,
Pomona, CA 91768

Jeremy B. Gan

Diamond Bar High School,
21400 Pathfinder Road,
Diamond Bar, CA 91765

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO- AND NANO-MANUFACTURING. Manuscript received July 19, 2017; final manuscript received October 30, 2017; published online December 14, 2017. Assoc. Editor: Joey Mead.

J. Micro Nano-Manuf 6(1), 011005 (Dec 14, 2017) (9 pages) Paper No: JMNM-17-1043; doi: 10.1115/1.4038432 History: Received July 19, 2017; Revised October 30, 2017

In this work, an electrohydrodynamic casting approach was used to manufacture a carbon nanofiber (CNF) composite material containing bismuth telluride (Bi2Te3) particles. A 10% polyacrylonitrile (PAN) polymer solution was taken as the precursor to generate nanofibers. Bismuth telluride microparticles were added into the polymer solution. The particle-containing solution was electrohydrodynamically cast onto a substrate to form a PAN-based nanofiber composite mat. High temperature heat treatment on the polymeric matrix composite mat in hydrogen atmosphere resulted in the formation of a microparticle-loaded CNF composite material. Scanning electron microscopic (SEM) analysis was conducted to observe the morphology and reveal the composition of the composite material. Energy conversion functions in view of converting heat into electricity, electromagnetic wave energy into heat, and photon energy into electricity were shown. Strong Seebeck effect, hyperthermia, and photovoltaics of the composite mat were found. In addition, the potential applications as sensors were discussed.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Zhang, H. T. , Luo, X. G. , Wang, C. H. , Xiong, Y. M. , Li, S. Y. , and Chen, X. H. , 2004, “ Characterization of Nanocrystalline Bismuth Telluride (Bi2Te3) Synthesized by a Hydrothermal Method,” J. Crystal Growth, 265(3–4), pp. 558–562. [CrossRef]
Sun, Y. , Cheng, H. , Gao, S. , Liu, Q. , Sun, Z. , Xiao, C. , Wu, C. , Wei, S. , and Xie, Y. , 2012, “ Atomically Thick Bismuth Selenide Freestanding Single Layers Achieving Enhanced Thermoelectric Energy Harvesting,” J. Am. Chem. Soc., 134(50), pp. 20294–20297. [CrossRef] [PubMed]
Prieto, A. L. , Sander, M. S. , Martin-Gonzalez, M. S. , Gronsky, R. , Sands, T. , and Stacy, A. M. , 2001, “ Electrodeposition of Ordered Bi2Te3 Nanowire Arrays,” J. Am. Chem. Soc., 123(29), pp. 7160–7161. [CrossRef] [PubMed]
Borca-Tasciuc, D. A. , Chen, G. , Prieto, A. , Martín-González, M. S. , Stacy, A. , Sands, T. , Ryan, M. A. , and Fleurial, J. P. , 2004, “ Thermal Properties of Electrodeposited Bismuth Telluride Nanowires Embedded in Amorphous Alumina,” Appl. Phys. Lett., 85(24), pp. 6001–6003. [CrossRef]
Pang, H. , Piao, Y. Y. , Tan, Y. Q. , Jiang, G. Y. , Wang, J. H. , and Li, Z. M. , 2013, “ Thermoelectric Behavior of Segregated Conductive Polymer Composites With Hybrid Fillers of Carbon Nanotube and Bismuth Telluride,” Mater. Lett., 107, pp. 150–153. [CrossRef]
Chatterjee, K. , Suresh, A. , Ganguly, S. , Kargupta, K. , and Banerjee, D. , 2009, “ Synthesis and Characterization of an Electro-Deposited Polyaniline-Bismuth Telluride Nanocomposite—A Novel Thermoelectric Material,” Mater. Charact., 60(12), pp. 1597–1601. [CrossRef]
Li, J. F. , and Liu, J. , 2006, “ Effect of Nano-SiC Dispersion on Thermoelectric Properties of Bi2Te3 Polycrystals,” Phys. Stat. Sol. A, 203(15), pp. 3768–3773. [CrossRef]
Kim, K. T. , Choi, S. Y. , Shin, E. H. , Moon, K. S. , Koo, H. Y. , Lee, G. G. , and Ha, G. H. , 2013, “ The Influence of CNTs on the Thermoelectric Properties of a CNT/Bi2Te3 Composite,” Carbon, 52, pp. 541–549. [CrossRef]
Lu, W. , Ding, Y. , Chen, Y. , Wang, Z. L. , and Fang, J. , 2005, “ Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth,” J. Am. Chem. Soc., 127(28), pp. 10112–10116. [CrossRef] [PubMed]
Sumithra, S. , Takas, N. J. , Misra, D. K. , Nolting, W. M. , Poudeu, P. F. P. , and Stokes, K. L. , 2011, “ Enhancement in Thermoelectric Figure of Merit in Nanostructured Bi2Te3 With Semimetal Nanoinclusions,” Adv. Energy Mater., 1(6), pp. 1141–1147.
Zhao, X. B. , Ji, X. H. , Zhang, Y. H. , Zhu, T. J. , Tu, J. P. , and Zhang, X. B. , 2005, “ Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites,” Appl. Phys. Lett., 86(6), p. 062111. [CrossRef]
Chen, C. L. , Chen, Y. Y. , Lin, S. J. , Ho, J. C. , Lee, P. C. , Chen, C. D. , and Harutyunyan, S. R. , 2010, “ Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires,” J. Phys. Chem. C, 114(8), pp. 3385–3389. [CrossRef]
Toprak, M. , Zhang, Y. , and Muhammed, M. , 2003, “ Chemical Alloying and Characterization of Nanocrystalline Bismuth Telluride,” Mater. Lett., 57(24–25), pp. 3976–3982. [CrossRef]
Kim, K. T. , Koo, H. Y. , Lee, G. G. , and Ha, G. H. , 2012, “ Synthesis of Alumina Nanoparticle-Embedded-Bismuth Telluride Matrix Thermoelectric Composite Powders,” Mater. Lett., 82, pp. 141–144. [CrossRef]
Chávez-Ángel, E. , Reparaz, J. S. , Gomis-Bresco, J. , Wagner, M. R. , Cuffe, J. , Graczykowski, B. , Shchepetov, H. , Jiang, A. , Prunnila, M. , Ahopelto, J. , Alzina, F. , and Sotomayor Torres, C. M. , 2014, “ Reduction of the Thermal Conductivity in Free-Standing Silicon Nano-Membranes Investigated by Non-Invasive Raman Thermometry,” APL Mater., 2(1), p. 012113. [CrossRef]
Liang, B. , Song, Z. , Wang, M. , Wang, L. , and Jiang, W. , 2013, “ Fabrication and Thermoelectric Properties of Graphene/Bi2Te3 Composite Materials,” J. Nanomater., 2013, p. 210767.
Goldsmid, H. J. , 2014, “ Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation,” Mater., 7(4), pp. 2577–2592. http://www.mdpi.com/1996-1944/7/4/2577
Keshavarz, M. K. , Vasilevskiy, D. , Masut, R. A. , and Turenne, S. , 2013, “ p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion,” J. Electron. Mater., 42(7), pp. 1429–1435. [CrossRef]
Szymczak, J. , Legeai, S. , Michel, S. , Diliberto, S. , Stein, N. , and Boulanger, C. , 2014, “ Electrodeposition of Stoichiometric Bismuth Telluride Bi2Te3 Using Apiperidinium Ionic Liquid Binary Mixture,” Electrochim. Acta, 137, pp. 586–594. [CrossRef]
Deng, Y. , Nan, C. W. , Wei, G. D. , Guo, L. , and Lin, Y. H. , 2003, “ Organic-Assisted Growth of Bismuth Telluride Nanocrystals,” Chem. Phys. Lett., 374(3–4), pp. 410–415. [CrossRef]
Liao, C. N. , and She, T. H. , 2007, “ Preparation of Bismuth Telluride Thin Films Through Interfacial Reaction,” Thin Solid Films, 515(20–21), pp. 8059–8064. [CrossRef]
Sokolova, O. B. , Skipidarova, S. Y. , Duvankova, N. I. , and Shabunina, G. G. , 2004, “ Chemical Reactions on the Bi2Te3–Bi2Se3 Section in the Process of Crystal Growth,” J. Crystal Growth, 262(1–4), pp. 442–448. [CrossRef]
Kim, K. T. , and Ha, G. H. , 2013, “ Fabrication and Enhanced Thermoelectric Properties of Alumina Nanoparticle-Dispersed Bi0.5Sb1.5Te3 Matrix Composites,” J. Nanomater., 2013, p. 821657.
Gothard, N. , Wilks, G. , Tritt, T. M. , and Apowart, J. E. , 2010, “ Effect of Processing Route on the Microstructure and Thermoelectric Properties of Bismuth Telluride-Based Alloys,” J. Electron. Mater., 39(9), pp. 1909–1913. [CrossRef]
Ganguly, S. , Zhou, C. , Morelli, D. , Sakamoto, J. , Uher, C. , and Brock, S. L. , 2011, “ Synthesis and Evaluation of Lead Telluride/Bismuth Antimony Telluride Nanocomposites for Thermoelectric Applications,” J. Solid State Chem., 184(12), pp. 3195–3201. [CrossRef]
Kim, J. , Lee, J. Y. , Lim, J. H. , and Myung, N. V. , 2016, “ Optimization of Thermoelectric Properties of p-Type AgSbTe2 Thin Films Via Electrochemical Synthesis,” Electrochim. Acta, 196, pp. 579–586. [CrossRef]
Baba, S. , Sato, H. , Huang, L. , Uritani, A. , Funahashi, R. , and Akedo, J. , 2014, “ Formation and Characterization of Polyethylene Terephthalate-Based (Bi0.15Sb0.85)2Te3 Thermoelectric Modules With CoSb3 Adhesion Layer by Aerosol Deposition,” J Alloys Compd., 589, pp. 56–60. [CrossRef]
Bark, H. , Kim, J. S. , Kim, H. , Yim, J. H. , and Lee, H. , 2013, “ Effect of Multiwalled Carbon Nanotubes on the Thermoelectric Properties of a Bismuth Telluride Matrix,” Curr. Appl. Phys., 13(Suppl. 2), pp. S111–S114. [CrossRef]
Chung, D. D. L. , 2017, “ Processing-Structure-Property Relationships of Continuous Carbon Fiber Polymer-Matrix Composites,” Mater. Sci. Eng. R, 113, pp. 1–29. [CrossRef]
Mahmoud, L. , Alhwarai, M. , Samad, Y. A. , Mohammad, B. , Laio, K. , and Elnaggar, I. , 2015, “ Characterization of a Graphene-Based Thermoelectric Generator Using a Cost-Effective Fabrication Process,” Energy Procedia, 75, pp. 615–620. [CrossRef]
Lee, S. , Kim, J. , Ku, B. C. , Kim, J. , and Joh, H. I. , 2012, “ Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization,” Adv. Chem. Eng. Sci., 2(2), pp. 275–282. [CrossRef]
Saha, B. , and Schatz, G. C. , 2012, “ Carbonization in Polyacrylonitrile (PAN) Based Carbon Fibers Studied by ReaxFF Molecular Dynamics Simulations,” J. Phys. Chem. B, 116(15), pp. 4684–4692. [CrossRef] [PubMed]
Ma, Q. , Gao, A. , Tong, Y. , and Zhang, Z. , 2016, “ The Densification Mechanism of Polyacrylonitrile Carbon Fibers During Carbonization,” New Carbon Mater., 31(5), pp. 550–554. [CrossRef]
Hameed, N. , Sharp, J. , Nunna, S. , Creighton, C. , Magniez, K. , Jyotishkumar, P. , Salim, N. V. , and Fox, B. , 2016, “ Structural Transformation of Polyacrylonitrile Fibers During Stabilization and Low Temperature Carbonization,” Polym. Degrd. Stab., 128, pp. 39–45. [CrossRef]
Liu, J. , Wang, P. H. , and Li, R. Y. , 1994, “ Continuous Carbonization of Polyacrylonitrile-Based Oxidized Fibers: Aspects on Mechanical Properties and Morphological Structure,” J. Appl. Polym. Sci., 52(7), pp. 945–950. [CrossRef]
Wang, H. , Zhang, X. , Zhang, Y. , Cheng, N. , Yu, T. , Yang, Y. , and Yang, G. , 2016, “ Study of Carbonization Behavior of Polyacrylonitrile/Tin Salt as Anode Material for Lithium-Ion Batteries,” J. Appl. Polym. Sci., 133(36), p. 43914.
Sun, J. , Wu, G. , and Wang, Q. , 2005, “ The Effects of Carbonization Temperature on the Properties and Structure of PAN-Based Activated Carbon Hollow Fiber,” J. Appl. Polym. Sci., 97(5), pp. 2155–2160. [CrossRef]
Rahaman, M. S. A. , Ismail, A. F. , and Mustafa, A. , 2007, “ A Review of Heat Treatment on Polyacrylonitrile Fiber,” Polym. Degrd. Stab., 92(8), pp. 1421–1432. [CrossRef]
Goto, M. , Sasaki, M. , Xu, Y. , Zhan, T. , Isoda, Y. , and Shinohara, Y. , 2017, “ Control of p-Type and n-Type Thermoelectric Properties of Bismuth Telluride Thin Films by Combinatorial Sputter Coating Technology,” Appl. Surf. Sci., 407, pp. 405–411. [CrossRef]
El-Desouky, A. , Carter, M. , Mahmoudi, M. , Elwany, A. , and LeBlanc, S. , 2017, “ Influences of Energy Density on Microstructure and Consolidation of Selective Laser Melted Bismuth Telluride Thermoelectric Powder,” J. Manuf. Proc., 25, pp. 411–417. [CrossRef]
Shang, H. , Gu, H. , Zhong, Y. , Ding, F. , Li, G. , Qu, F. , Zhang, H. , Dong, Z. , Zhang, H. , and Zhou, W. , 2017, “ Synergetic Combination of Te Content and Deposition Temperature to Optimize Thermoelectric Properties Using Sputtered Bismuth Telluride Films,” J. Alloys Compd., 690, pp. 851–855. [CrossRef]
Gan, Y. X. , Sweetman, J. , and Lawrence, J. G. , 2010, “ Electrodeposition and Morphology Analysis of Bi–Te Thermoelectric Alloy Nanoparticles on Copper Substrate,” Mater. Lett., 64(3), pp. 449–452. [CrossRef]
Yamauchi, K. , and Takashiri, M. , 2017, “ Highly Oriented Crystal Growth of Nanocrystalline Bismuth Telluride Thin Films With Anisotropic Thermoelectric Properties Using Two-Step Treatment,” J. Alloys Compd., 698, pp. 977–983. [CrossRef]
Ge, Z. H. , Ji, Y. , Qiu, Y. H. , Chong, X. , Feng, J. , and He, J. , 2018, “ Enhanced Thermoelectric Properties of Bismuth Telluride Bulk Achieved by Telluride-Spilling During the Spark Plasma Sintering Process,” Script Mater., 143, pp. 90–93. [CrossRef]
Wada, K. , Tomita, K. , and Takashiri, M. , 2017, “ Fabrication of Bismuth Telluride Nanoplates Via Solvothermal Synthesis Using Different Alkalis and Nanoplate Thin Films by Printing Method,” J. Crystal Growth, 468, pp. 194–198. [CrossRef]
Lei, C. , Ryder, K. S. , Koukharenko, E. , Burton, M. , and Nandhakumar, I. S. , 2016, “ Electrochemical Deposition of Bismuth Telluride Thick Layers Onto Nickel,” Electrochem. Comm., 66, pp. 1–4. [CrossRef]
Kusagaya, K. , and Takashiri, M. , 2015, “ Investigation of the Effects of Compressive and Tensile Strain on n-Type Bismuth Telluride and p-Type Antimony Telluride Nanocrystalline Thin Films for Use in Flexible Thermoelectric Generators,” J. Alloys Compd., 653, pp. 480–485. [CrossRef]
Takashiri, M. , Imai, K. , Uyama, M. , Hagino, H. , Tanaka, S. , Miyazaki, K. , and Nishi, Y. , 2014, “ Effects of Homogeneous Irradiation of Electron Beam on Crystal Growth and Thermoelectric Properties of Nanocrystalline Bismuth Selenium Telluride Thin Films,” J. Alloys Compd., 612, pp. 98–102. [CrossRef]
Chao, W. H. , Chen, Y. R. , Tseng, S. C. , Yang, P. H. , Wu, R. J. , and Hwang, J. Y. , 2014, “ Enhanced Thermoelectric Properties of Metal Film on Bismuth Telluride-Based Materials,” Thin Solid Films, 570(Pt. B), pp. 172–177. [CrossRef]
Ju, H. , and Kim, J. , 2016, “ Preparation and Structure Dependent Thermoelectric Properties of Nanostructured Bulk Bismuth Telluride With Graphene,” J. Alloys Compd., 664, pp. 639–647. [CrossRef]
Keshavarz, M. K. , Vasilevskiy, D. , Masut, R. A. , and Turenne, S. , 2014, “ Synthesis and Characterization of Bismuth Telluride-Based Thermoelectric Nanocomposites Containing MoS2 Nano-Inclusions,” Mater. Charact., 95, pp. 44–49. [CrossRef]
Jung, K. K. , and Ko, J. S. , 2014, “ Thermoelectric Generator Based on a Bismuth-Telluride Alloy Fabricated by Addition of Ethylene Glycol,” Curr. Appl. Phys., 14(12), pp. 1788–1793. [CrossRef]
Kim, J. , Zhu, S. , Gan, Y. X. , and Forward, K. , 2015, “ Magnetic Hyperthermia Behavior of Electrospun Polyvinylpyrrolidone (PVP) Nanofibers Containing Magnetic Oxide Materials,” Adv. Res., 3(1), pp. 84–91. [CrossRef]
Gan, Y. X. , Chen, A. D. , Gan, R. N. , and Hamdan, A. S. , 2017, “ Energy Conversion Behaviors of Antimony Telluride Particle Loaded Partially Carbonized Nanofiber Composite Mat Manufactured by Electrohydrodynamic Casting,” Microelectron. Eng., 181, pp. 16–21. [CrossRef]
Zhao, L. R. , Jang, B. Z. , and Zhou, J. L. , 1998, “ Effect of Polymeric Precursors on Properties of Semiconducting Carbon/Carbon Composites,” J. Mater. Sci., 33(7), pp. 1809–1817. [CrossRef]
Abd El-Aziz, A. M. , El Backly, R. M. , Taha, N. A. , El-Maghraby, A. , and Kandil, S. H. , 2017, “ Preparation and Characterization of Carbon Nanofibrous/Hydroxyapatite Sheets for Bone Tissue Engineering,” Mater. Sci. Eng. C, 76, pp. 1188–1195. [CrossRef]


Grahic Jump Location
Fig. 1

Illustrations showing the electrohydrodynamic manufacturing and the post treatment facilities. (a) Electrohydrodynamic manufacturing system and (b) composite material heat treatment setup: (1) hydrogen gas supply, (2) vacuum pump with pressure gage, (3) stainless steel vacuum sealing flanges, (4) quartz tube, (5) split furnace, (6) porous alumina thermal insulation blacks, (7) Al2O3 substrate, (8) composite sample, (9) cold trap for cooling carrier and released gas, (10) sodium carbonate solution for exhaust gas absorption, (11) hydrogen burning torch, and (12) programmable temperature control unit assembled in the base of the furnace.

Grahic Jump Location
Fig. 2

SEM analysis of the morphology and composition of the partially carbonized composite nanofiber containing Bi–Te microparticles: (a) SEM image of the material at low magnification, (b) SEM image of the composite at a slightly higher magnification, (c) SEM image of the composite at a further higher magnification, (d) SEM image of the composite at an even higher magnification showing the particle and fiber details, and (e) EDS area mapping results

Grahic Jump Location
Fig. 3

Thermoelectric response measurement setup and the results: (a) thermal wave test setup and (b) thermoelectric response of the composite fiber mat showing the general n-type semiconducting behavior

Grahic Jump Location
Fig. 4

Thermoelectric response results showing the feasibility of monitoring breathe-in and breathe-out: (a) short exhaling followed by long inhaling, (b) exhaling and inhaling with equal time, and (c) monitoring the coughing breathe-in and -out patterns

Grahic Jump Location
Fig. 5

Photovoltaic response measurement setup: (a) using the translating steel plate to regulate visible light on the nanofiber specimen and (b) using the fidget spinner to regulate visible light on the nanofiber specimen

Grahic Jump Location
Fig. 6

Time-dependent photoelectric property of the composite nanofiber measured using the translating steel plate to regulate visible light on the nanofiber specimen

Grahic Jump Location
Fig. 7

Photovoltaic responses of the composite tested using the translating steel plate to regulate visible light on the nanofiber specimen: (a) photosensitive response showing the switching behavior, (b) photosensitive response showing the same switching behavior after the composite being kept for 1 month to show the stability of the material, and (c) long time exposure to visible light to show the charge recombination behavior in the composite

Grahic Jump Location
Fig. 8

Photovoltaic response results measured using a fidget spinner to regulate visible light on the nanofiber specimen to demonstrate the sensing function of the composite: (a) photosensitive response of the composite to the light passing through a fidget spinner, (b) photosensitive response showing the same behavior after the composite being kept for 1 month to show the stability of the material, and (c) open circuit voltage decaying pattern used for determining the acceleration of the fidget spinner



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In