Research Papers

Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene

[+] Author and Article Information
Hao Xin, Qishen Zhao, Dongmei Chen

Department of Mechanical Engineering,
University of Texas at Austin,
204 E. Dean Keeton Street,
Austin, TX 78712

Wei Li

Department of Mechanical Engineering,
University of Texas at Austin,
204 E. Dean Keeton Street,
Austin, TX 78712
e-mail: weiwli@austin.utexas.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received November 29, 2017; final manuscript received May 29, 2018; published online June 22, 2018. Assoc. Editor: Shih-Chi Chen.

J. Micro Nano-Manuf 6(3), 031004 (Jun 22, 2018) (7 pages) Paper No: JMNM-17-1069; doi: 10.1115/1.4040449 History: Received November 29, 2017; Revised May 29, 2018

Scaling up graphene fabrication is a critical step for realizing industrial applications of chemical vapor deposition (CVD) graphene, such as large-area flexible displays and solar cells. In this study, a roll-to-roll (R2R) graphene transfer system using mechanical peeling is proposed. No etching of graphene growth substrate is involved; thus, the process is economical and environmentally benign. A prototype R2R graphene transfer machine was developed. Experiments were conducted to test the effects of relevant process parameters, including linear film speed, separation angle, and the guiding roller diameter. The linear film speed was found to have the highest impact on the transferred graphene coverage, followed by the roller diameter, while the effect of separation angle was statistically insignificant. Furthermore, there was an interaction effect between the film speed and roller diameter, which can be attributed to the competing effects of tensile strain and strain rate. Overall, the experimental results showed that larger than 98% graphene coverage could be achieved with high linear film speed and large guiding roller diameter, demonstrating that a large-scale dry graphene transfer process is possible with R2R mechanical peeling.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Geim, A. K. , and Novoselov, K. S. , 2007, “ The Rise of Graphene,” Nat. Mater., 6(3), pp. 183–191. [CrossRef] [PubMed]
Geim, A. K. , and Kim, P. , 2008, “ Carbon Wonderland,” Sci. Am., 298(4), pp. 90–97. [CrossRef] [PubMed]
Novoselov, K. S. , Geim, A. K. , Morozov, S. , Jiang, D. , Katsnelson, M. , Grigorieva, I. , Dubonos, S. , and Firsov, A. , 2005, “ Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 438(7065), pp. 197–200. [CrossRef] [PubMed]
Li, X. , Cai, W. , An, J. , Kim, S. , Nah, J. , Yang, D. , Piner, R. , Velamakanni, A. , Jung, I. , and Tutuc, E. , 2009, “ Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, 324(5932), pp. 1312–1314. [CrossRef] [PubMed]
Li, X. , Zhu, Y. , Cai, W. , Borysiak, M. , Han, B. , Chen, D. , Piner, R. D. , Colombo, L. , and Ruoff, R. S. , 2009, “ Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett., 9(12), pp. 4359–4363. [CrossRef] [PubMed]
Li, X. , Magnuson, C. W. , Venugopal, A. , Tromp, R. M. , Hannon, J. B. , Vogel, E. M. , Colombo, L. , and Ruoff, R. S. , 2011, “ Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper,” J. Am. Chem. Soc., 133(9), pp. 2816–2819. [CrossRef] [PubMed]
Fang, M. , Wang, K. , Lu, H. , Yang, Y. , and Nutt, S. , 2009, “ Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites,” J. Mater. Chem., 19(38), pp. 7098–7105. [CrossRef]
Li, A. , Zhang, C. , and Zhang, Y.-F. , 2017, “ Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications,” Polymers, 9(12), p. 437. [CrossRef]
Hesjedal, T. , 2011, “ Continuous Roll-to-Roll Growth of Graphene Films by Chemical Vapor Deposition,” Appl. Phys. Lett., 98(13), p. 133106. [CrossRef]
Allen, M. , Lee, C. , Ahn, B. , Kololuoma, T. , Shin, K. , and Ko, S. , 2011, “ R2R Gravure and Inkjet Printed RF Resonant Tag,” Microelectron. Eng., 88(11), pp. 3293–3299. [CrossRef]
Chaug, Y. A. , Haubrich, J. E. , Sereda, M. , and Liang, R. , 2004, “ Roll-to-Roll Processes for the Manufacturing of Patterned Conductive Electrodes on Flexible Substrates,” MRS Proc., 814, p. 19.6.
Gu, X. , Zhou, Y. , Gu, K. , Kurosawa, T. , Guo, Y. , Li, Y. , Lin, H. , Schroeder, B. C. , Yan, H. , and Molina‐Lopez, F. , 2017, “ Roll-to-Roll Printed Large-Area All-Polymer Solar Cells With 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend,” Adv. Energy Mater., 7(14), p. 1602742. [CrossRef]
Wang, B.-Y. , Lee, E.-S. , Lim, D.-S. , Kang, H. W. , and Oh, Y.-J. , 2017, “ Roll-to-Roll Slot Die Production of 300 mm Large Area Silver Nanowire Mesh Films for Flexible Transparent Electrodes,” RSC Adv., 7(13), pp. 7540–7546. [CrossRef]
Sharon, M. , and Sharon, M. , 2015, “ Direct Transfer or Roll-to-Roll Transfer of Graphene Sheet Onto Desired Substrate,” Graphene: An Introduction to the Fundamentals and Industrial Applications, Scrivener Publishing, Beverly, MA, pp. 197–215. [CrossRef]
Vlassiouk, I. , Fulvio, P. , Meyer, H. , Lavrik, N. , Dai, S. , Datskos, P. , and Smirnov, S. , 2013, “ Large Scale Atmospheric Pressure Chemical Vapor Deposition of Graphene,” Carbon, 54, pp. 58–67. [CrossRef]
Zhong, G. , Wu, X. , D'Arsie, L. , Teo, K. B. , Rupesinghe, N. L. , Jouvray, A. , and Robertson, J. , 2016, “ Growth of Continuous Graphene by Open Roll-to-Roll Chemical Vapor Deposition,” Appl. Phys. Lett., 109(19), p. 193103. [CrossRef]
Kobayashi, T. , Bando, M. , Kimura, N. , Shimizu, K. , Kadono, K. , Umezu, N. , Miyahara, K. , Hayazaki, S. , Nagai, S. , and Mizuguchi, Y. , 2013, “ Production of a 100-M-Long High-Quality Graphene Transparent Conductive Film by Roll-to-Roll Chemical Vapor Deposition and Transfer Process,” Appl. Phys. Lett., 102(2), p. 023112. [CrossRef]
Polsen, E. S. , McNerny, D. Q. , Viswanath, B. , Pattinson, S. W. , and Hart, A. J. , 2015, “ High-Speed Roll-to-Roll Manufacturing of Graphene Using a Concentric Tube CVD Reactor,” Sci. Rep., 5, p. 10257. [CrossRef] [PubMed]
Yamada, T. , Ishihara, M. , Kim, J. , Hasegawa, M. , and Iijima, S. , 2012, “ A Roll-to-Roll Microwave Plasma Chemical Vapor Deposition Process for the Production of 294 mm Width Graphene Films at Low Temperature,” Carbon, 50(7), pp. 2615–2619. [CrossRef]
Yamada, T. , Ishihara, M. , and Hasegawa, M. , 2013, “ Large Area Coating of Graphene at Low Temperature Using a Roll-to-Roll Microwave Plasma Chemical Vapor Deposition,” Thin Solid Films, 532, pp. 89–93. [CrossRef]
Juang, Z.-Y. , Wu, C.-Y. , Lu, A.-Y. , Su, C.-Y. , Leou, K.-C. , Chen, F.-R. , and Tsai, C.-H. , 2010, “ Graphene Synthesis by Chemical Vapor Deposition and Transfer by a Roll-to-Roll Process,” Carbon, 48(11), pp. 3169–3174. [CrossRef]
Bae, S. , Kim, H. , Lee, Y. , Xu, X. , Park, J.-S. , Zheng, Y. , Balakrishnan, J. , Lei, T. , Kim, H. R. , and Song, Y. I. , 2010, “ Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nat. Nanotechnol., 5(8), pp. 574–578. [CrossRef] [PubMed]
Deng, B. , Hsu, P.-C. , Chen, G. , Chandrashekar, B. , Liao, L. , Ayitimuda, Z. , Wu, J. , Guo, Y. , Lin, L. , and Zhou, Y. , 2015, “ Roll-to-Roll Encapsulation of Metal Nanowires Between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes,” Nano Lett., 15(6), pp. 4206–4213. [CrossRef] [PubMed]
Chandrashekar, B. N. , Deng, B. , Smitha, A. S. , Chen, Y. , Tan, C. , Zhang, H. , Peng, H. , and Liu, Z. , 2015, “ Roll-to-Roll Green Transfer of CVD Graphene Onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator,” Adv. Mater., 27(35), pp. 5210–5216. [CrossRef] [PubMed]
Jang, B. , Kim, C.-H. , Choi, S. T. , Kim, K.-S. , Kim, K.-S. , Lee, H.-J. , Cho, S. , Ahn, J.-H. , and Kim, J.-H. , 2017, “ Damage Mitigation in Roll-to-Roll Transfer of CVD-Graphene to Flexible Substrates,” 2D Mater., 4(2), p. 024002. [CrossRef]
Knieke, C. , Berger, A. , Voigt, M. , Taylor, R. N. K. , Röhrl, J. , and Peukert, W. , 2010, “ Scalable Production of Graphene Sheets by Mechanical Delamination,” Carbon, 48(11), pp. 3196–3204. [CrossRef]
Yi, M. , and Shen, Z. , 2015, “ A Review on Mechanical Exfoliation for the Scalable Production of Graphene,” J. Mater. Chem. A, 3(22), pp. 11700–11715. [CrossRef]
Coleman, J. N. , 2009, “ Liquid‐Phase Exfoliation of Nanotubes and Graphene,” Adv. Funct. Mater., 19(23), pp. 3680–3695. [CrossRef]
Coleman, J. N. , 2012, “ Liquid Exfoliation of Defect-Free Graphene,” Acc. Chem. Res., 46(1), pp. 14–22. [CrossRef] [PubMed]
Cui, X. , Zhang, C. , Hao, R. , and Hou, Y. , 2011, “ Liquid-Phase Exfoliation, Functionalization and Applications of Graphene,” Nanoscale, 3(5), pp. 2118–2126. [CrossRef] [PubMed]
Yoon, T. , Shin, W. C. , Kim, T. Y. , Mun, J. H. , Kim, T.-S. , and Cho, B. J. , 2012, “ Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process,” Nano Lett., 12(3), pp. 1448–1452. [CrossRef] [PubMed]
Na, S. R. , Suk, J. W. , Tao, L. , Akinwande, D. , Ruoff, R. S. , Huang, R. , and Liechti, K. M. , 2015, “ Selective Mechanical Transfer of Graphene From Seed Copper Foil Using Rate Effects,” ACS Nano, 9(2), pp. 1325–1335. [CrossRef] [PubMed]
Na, S. R. , Rahimi, S. , Tao, L. , Chou, H. , Ameri, S. K. , Akinwande, D. , and Liechti, K. , 2016, “ Clean Graphene Interfaces by Selective Dry Transfer for Large Area Silicon Integration,” Nanoscale, 8(14), pp. 7523–7533. [CrossRef] [PubMed]
Xin, H. , Borduin, R. , Jiang, W. , Liechti, K. M. , and Li, W. , 2017, “ Adhesion Energy of As-Grown Graphene on Copper Foil With a Blister Test,” Carbon, 123(Suppl. C), pp. 243–249. [CrossRef]
Abràmoff, M. D. , Magalhães, P. J. , and Ram, S. J. , 2004, “ Image Processing With ImageJ,” Biophotonics Int., 11(7), pp. 36–42. https://imagescience.org/meijering/publications/download/bio2004.pdf
Dresselhaus, M. S. , Jorio, A. , Hofmann, M. , Dresselhaus, G. , and Saito, R. , 2010, “ Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett., 10(3), pp. 751–758. [CrossRef] [PubMed]
Meitl, M. A. , Zhu, Z.-T. , Kumar, V. , Lee, K. J. , Feng, X. , Huang, Y. Y. , Adesida, I. , Nuzzo, R. G. , and Rogers, J. A. , 2005, “ Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nat. Mater., 5(1), p. 33. [CrossRef]
Na, S. R. , Wang, X. , Piner, R. D. , Huang, R. , Willson, C. G. , and Liechti, K. M. , 2016, “ Cracking of Polycrystalline Graphene on Copper Under Tension,” ACS Nano, 10(10), pp. 9616–9625. [CrossRef]


Grahic Jump Location
Fig. 3

A decentralized control scheme for R2R graphene transfer

Grahic Jump Location
Fig. 2

Sample preparation procedure with patched CVD graphene samples. Steps (a) and (b) were used to prepare a blister test sample to measure the adhesion energy of as-grown graphene in Ref. [34].

Grahic Jump Location
Fig. 1

A prototype R2R dry peeling machine: (a) a schematic and (b) a pictorial view

Grahic Jump Location
Fig. 4

As-grown CVD graphene on copper foil under SEM and AFM

Grahic Jump Location
Fig. 11

Strain development during the dry peeling graphene transfer process for (a) small guiding roller and (b) large guiding roller

Grahic Jump Location
Fig. 5

Graphene transferred on PET/EVA film by dry peeling: (a) an SEM image of the sample surface and (b) a single-scan Raman spectrum of the transferred graphene on PET/EVA

Grahic Jump Location
Fig. 6

Scanning electron microscope images of graphene transferred on PET/EVA with different film speed. The top row was taken at a lower magnification (scale bar 100 μm), the bottom row at a higher magnification (scale bar 50 μm).

Grahic Jump Location
Fig. 7

Effect of linear film speed on R2R graphene dry peeling. Three measurements were taken under each condition. The error bar shows the maximum and minimum values.

Grahic Jump Location
Fig. 8

Scanning electron microscope images of graphene transferred on PET/EVA with different separation angles. The top row was taken at a lower magnification (scale bar 100 μm), the bottom row at a higher magnification (scale bar 10 μm).

Grahic Jump Location
Fig. 9

Effect of separation angle on R2R graphene dry peeling. Three measurements were taken under each condition. The error bar shows the maximum and minimum values.

Grahic Jump Location
Fig. 10

Analysis of design of experiment data: (a) main effects and (b) interaction effects



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In