0
Research Papers

Nanoparticle Emissions From Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries

[+] Author and Article Information
Fenfen Wang

Department of Mechanical
and Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106

Xianfeng Gao, Lulu Ma

Department of Mechanical Engineering,
University of Wisconsin-Milwaukee,
Milwaukee, WI 53211

Chris Yuan

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MICRO-AND NANO-MANUFACTURING. Manuscript received September 12, 2018; final manuscript received December 12, 2018; published online April 15, 2019. Assoc. Editor: Marriner Merrill.

J. Micro Nano-Manuf 7(1), 011001 (Apr 15, 2019) (10 pages) Paper No: JMNM-18-1032; doi: 10.1115/1.4042383 History: Received September 12, 2018; Revised December 12, 2018

As one of the most promising anode materials for high-capacity lithium ion batteries (LIBs), silicon nanowires (SiNWs) have been studied extensively. The metal-assisted chemical etching (MACE) is a low-cost and scalable method for SiNW synthesis. Nanoparticle emissions from the MACE process, however, are of grave concerns due to their hazardous effects on both occupational and public health. In this study, both airborne and aqueous nanoparticle emissions from the MACE process for SiNWs with three sizes of 90 nm, 120 nm, and 140 nm are experimentally investigated. The prepared SiNWs are used as anodes of LIB coin cells, and the experimental results reveal that the initial discharge and charge capacities of LIB electrodes are 3636 and 2721 mAh g−1 with 90 nm SiNWs, 3779 and 2712 mAh g−1 with 120 nm SiNWs, and 3611 and 2539 mAh g−1 with 140 nm SiNWs. It is found that for 1 kW h of LIB electrodes, the MACE process for 140 nm SiNWs produces a high concentration of airborne nanoparticle emissions of 2.48 × 109 particles/cm3; the process for 120 nm SiNWs produces a high mass concentration of aqueous particle emissions, with a value of 9.95 × 105 mg/L. The findings in this study can provide experimental data of nanoparticle emissions from the MACE process for SiNWs for LIB applications and can help the environmental impact assessment and life cycle assessment of the technology in the future.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Armand, M. , and Tarascon, J.-M. , 2008, “ Building Better Batteries,” Nature, 451(7179), pp. 652–657. [CrossRef] [PubMed]
Scrosati, B. , and Garche, J. , 2010, “ Lithium Batteries: Status, Prospects and Future,” J. Power Sources, 195(9), pp. 2419–2430. [CrossRef]
Tarascon, J.-M. , and Armand, M. , 2001, “ Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 414(6861), pp. 359–367. [CrossRef] [PubMed]
Roy, P. , and Srivastava, S. K. , 2015, “ Nanostructured Anode Materials for Lithium Ion Batteries,” J. Mater. Chem. A, 3(6), pp. 2454–2484. [CrossRef]
Nazri, G.-A. , and Pistoia, G. , 2008, Lithium Batteries: Science and Technology, Springer Science & Business Media, Berlin.
Zhang, W.-J. , 2011, “ A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries,” J. Power Sources, 196(1), pp. 13–24. [CrossRef]
Boukamp, B. , Lesh, G. , and Huggins, R. , 1981, “ All-Solid Lithium Electrodes With Mixed-Conductor Matrix,” J. Electrochem. Soc., 128(4), pp. 725–729. [CrossRef]
Wu, H. , and Cui, Y. , 2012, “ Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries,” Nano Today, 7(5), pp. 414–429. [CrossRef]
Beaulieu, L. , Eberman, K. , Turner, R. , Krause, L. , and Dahn, J. , 2001, “ Colossal Reversible Volume Changes in Lithium Alloys,” Electrochem. Solid-State Lett., 4(9), pp. A137–A140. [CrossRef]
Li, J.-Y. , Xu, Q. , Li, G. , Yin, Y.-X. , Wan, L.-J. , and Guo, Y.-G. , 2017, “ Research Progress Regarding Si-Based Anode Materials Towards Practical Application in High Energy Density Li-Ion Batteries,” Mater. Chem. Front., 1(9), pp. 1691–1708. [CrossRef]
Peng, K. , Jie, J. , Zhang, W. , and Lee, S.-T. , 2008, “ Silicon Nanowires for Rechargeable Lithium-Ion Battery Anodes,” Appl. Phys. Lett., 93(3), p. 033105. [CrossRef]
Cui, L.-F. , Yang, Y. , Hsu, C.-M. , and Cui, Y. , 2009, “ Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries,” Nano Lett., 9(9), pp. 3370–3374. [CrossRef] [PubMed]
Liu, X. H. , Zhang, L. Q. , Zhong, L. , Liu, Y. , Zheng, H. , Wang, J. W. , Cho, J.-H. , Dayeh, S. A. , Picraux, S. T. , and Sullivan, J. P. , 2011, “ Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes,” Nano Letters, 11(6), pp. 2251–2258. [CrossRef] [PubMed]
Magasinski, A. , Dixon, P. , Hertzberg, B. , Kvit, A. , Ayala, J. , and Yushin, G. , 2010, “ High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach,” Nat. Mater., 9(4), pp. 353–358. [CrossRef] [PubMed]
Ge, M. , Rong, J. , Fang, X. , Zhang, A. , Lu, Y. , and Zhou, C. , 2013, “ Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes,” Nano Res., 6(3), pp. 174–181. [CrossRef]
Song, T. , Xia, J. , Lee, J.-H. , Lee, D. H. , Kwon, M.-S. , Choi, J.-M. , Wu, J. , Doo, S. K. , Chang, H. , and Park, W. I. , 2010, “ Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries,” Nano Lett., 10(5), pp. 1710–1716. [CrossRef] [PubMed]
Park, M.-H. , Kim, M. G. , Joo, J. , Kim, K. , Kim, J. , Ahn, S. , Cui, Y. , and Cho, J. , 2009, “ Silicon Nanotube Battery Anodes,” Nano Lett., 9(11), pp. 3844–3847. [CrossRef] [PubMed]
Yao, Y. , McDowell, M. T. , Ryu, I. , Wu, H. , Liu, N. , Hu, L. , Nix, W. D. , and Cui, Y. , 2011, “ Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life,” Nano Lett., 11(7), pp. 2949–2954. [CrossRef] [PubMed]
Wang, X.-L. , and Han, W.-Q. , 2010, “ Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires,” ACS Appl. Mater. Interfaces, 2(12), pp. 3709–3713. [CrossRef] [PubMed]
Kim, H. , Han, B. , Choo, J. , and Cho, J. , 2008, “ Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries,” Angew. Chem., 120(52), pp. 10305–10308. [CrossRef]
Ge, M. , Rong, J. , Fang, X. , and Zhou, C. , 2012, “ Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life,” Nano Lett., 12(5), pp. 2318–2323. [CrossRef] [PubMed]
Chan, C. K. , Peng, H. , Liu, G. , McIlwrath, K. , Zhang, X. F. , Huggins, R. A. , and Cui, Y. , 2008, “ High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 3(1), pp. 31–35. [CrossRef] [PubMed]
Westwater, J. , Gosain, D. , Tomiya, S. , Usui, S. , and Ruda, H. , 1997, “ Growth of Silicon Nanowires Via Gold/Silane Vapor–Liquid–Solid Reaction,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process., Meas., Phenom., 15(3), pp. 554–557. [CrossRef]
Sunkara, M. K. , Sharma, S. , Miranda, R. , Lian, G. , and Dickey, E. , 2001, “ Bulk Synthesis of Silicon Nanowires Using a Low-Temperature Vapor–Liquid–Solid Method,” Appl. Phys. Lett., 79(10), pp. 1546–1548. [CrossRef]
Wittemann, J. V. , Münchgesang, W. , Senz, S. , and Schmidt, V. , 2010, Silver Catalyzed Ultrathin Silicon Nanowires Grown by Low-Temperature Chemical-Vapor-Deposition, American Institute of Physics, Weinberg, Germany.
Hofmann, S. , Ducati, C. , Neill, R. , Piscanec, S. , Ferrari, A. , Geng, J. , Dunin-Borkowski, R. , and Robertson, J. , 2003, “ Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition,” J. Appl. Phys., 94(9), pp. 6005–6012. [CrossRef]
Zhang, Y. , Tang, Y. , Wang, N. , Yu, D. , Lee, C. , Bello, I. , and Lee, S. , 1998, “ Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett., 72(15), pp. 1835–1837. [CrossRef]
Yang, Y.-H. , Wu, S.-J. , Chiu, H.-S. , Lin, P.-I. , and Chen, Y.-T. , 2004, “ Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation,” J. Phys. Chem. B, 108(3), pp. 846–852. [CrossRef]
Zhang, M.-L. , Peng, K.-Q. , Fan, X. , Jie, J.-S. , Zhang, R.-Q. , Lee, S.-T. , and Wong, N.-B. , 2008, “ Preparation of Large-Area Uniform Silicon Nanowires Arrays Through Metal-Assisted Chemical Etching,” J. Phys. Chem. C, 112(12), pp. 4444–4450. [CrossRef]
Huang, Z. , Geyer, N. , Werner, P. , De Boor, J. , and Gösele, U. , 2011, “ Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater., 23(2), pp. 285–308. [CrossRef] [PubMed]
Srivastava, S. K. , Kumar, D. , Schmitt, S. , Sood, K. , Christiansen, S. , and Singh, P. , 2014, “ Large Area Fabrication of Vertical Silicon Nanowire Arrays by Silver-Assisted Single-Step Chemical Etching and Their Formation Kinetics,” Nanotechnology, 25(17), p. 175601. [CrossRef] [PubMed]
Chartier, C. , Bastide, S. , and Lévy-Clément, C. , 2008, “ Metal-Assisted Chemical Etching of Silicon in HF–H2O2,” Electrochim. Acta, 53(17), pp. 5509–5516. [CrossRef]
Geyer, N. , Fuhrmann, B. , Huang, Z. , de Boor, J. , Leipner, H. S. , and Werner, P. , 2012, “ Model for the Mass Transport During Metal-Assisted Chemical Etching With Contiguous Metal Films as Catalysts,” J. Phys. Chem. C, 116(24), pp. 13446–13451. [CrossRef]
Balasundaram, K. , 2015, Metal-Assisted Chemical Etching as a Disruptive Platform for Multi-Dimensional Semiconductor Sculpting, University of Illinois at Urbana-Champaign, Champaign, IL.
Li, M. , Li, Y. , Liu, W. , Yue, L. , Li, R. , Luo, Y. , Trevor, M. , Jiang, B. , Bai, F. , and Fu, P. , 2016, “ Metal-Assisted Chemical Etching for Designable Monocrystalline Silicon Nanostructure,” Mater. Res. Bull., 76, pp. 436–449. [CrossRef]
Bertolini, J. C. , 1992, “ Hydrofluoric Acid: A Review of Toxicity,” J. Emerg. Med., 10(2), pp. 163–168. [CrossRef] [PubMed]
Hussain, S. M. , Javorina, A. K. , Schrand, A. M. , Duhart, H. M. , Ali, S. F. , and Schlager, J. J. , 2006, “ The Interaction of Manganese Nanoparticles With PC-12 Cells Induces Dopamine Depletion,” Toxicol. Sci., 92(2), pp. 456–463. [CrossRef] [PubMed]
Hussain, S. , Hess, K. , Gearhart, J. , Geiss, K. , and Schlager, J. , 2005, “ In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells,” Toxicol. Vitro, 19(7), pp. 975–983. [CrossRef]
Braydich-Stolle, L. , Hussain, S. , Schlager, J. J. , and Hofmann, M.-C. , 2005, “ In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells,” Toxicol. Sci., 88(2), pp. 412–419. [CrossRef] [PubMed]
USEPA, 2007, “ Nanotechnology White Paper,” Environmental Protection Agency, Washington, DC, Report No. EPA 100/B-07/001.
Donaldson, K. , Li, X. , and MacNee, W. , 1998, “ Ultrafine (Nanometre) Particle Mediated Lung Injury,” J. Aerosol Sci., 29(5–6), pp. 553–560. [CrossRef]
Donaldson, K. , Stone, V. , Gilmour, P. , Brown, D. , and MacNee, W. , 2000, “ Ultrafine Particles: Mechanisms of Lung Injury,” Philos. Trans. R. Soc., A, 358(1775), pp. 2741–2749. [CrossRef]
Pope , C. A., III , Burnett, R. T. , Thun, M. J. , Calle, E. E. , Krewski, D. , Ito, K. , and Thurston, G. D. , 2002, “ Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution,” JAMA, 287(9), pp. 1132–1141. [CrossRef] [PubMed]
Hischier, R. , and Walser, T. , 2012, “ Life Cycle Assessment of Engineered Nanomaterials: State of the Art and Strategies to Overcome Existing Gaps,” Sci. Total Environ., 425, pp. 271–282. [CrossRef] [PubMed]
Kulkarni, P. , Baron, P. A. , and Willeke, K. , 2011, Aerosol Measurement: Principles, Techniques, and Applications, Wiley, Hoboken, NJ.
Rosalyne, A.-P. , 1995, “ Features Added to the Particle Size Distribution Software,” Holtsville, NY, accessed Jan. 4, 2019, http://www.asi-team.com/asi%20team/brookhaven/SOP%20for%20Particle%20Sizing.pdf
Wolf, R. , 2005, “ USGS Science for a Changing World,” Washington, DC, accessed Jan. 4, 2019, https://crustal.usgs.gov/laboratories/icpms/intro.html
Wang, F. , Gao, X. , Ma, L. , Li, T. , and Yuan, C. , 2017, “ Sustainability Analysis of Silicon Nanowire Fabrication for High Performance Lithium Ion Battery Anode,” Procedia Manuf., 7, pp. 151–156. [CrossRef]
Pyatilova, O. V. , Gavrilov, S. A. , Dronov, A. A. , Grishina, Y. S. , and Belov, A. N. , 2014, “ Role of Ag+ Ion Concentration on Metal-Assisted Chemical Etching of Silicon,” Solid State Phenomena, Trans Tech Publications, Zelenograd, Moscow, Russia, pp. 103–108.
Maynard, A. D. , and Kuempel, E. D. , 2005, “ Airborne Nanostructured Particles and Occupational Health,” J. Nanopart. Res., 7(6), pp. 587–614. [CrossRef]
Sioutas, C. , Delfino, R. J. , and Singh, M. , 2005, “ Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research,” Environ. Health Perspect., 113(8), pp. 947–955. [CrossRef] [PubMed]
Delfino, R. J. , Sioutas, C. , and Malik, S. , 2005, “ Potential Role of Ultrafine Particles in Associations Between Airborne Particle Mass and Cardiovascular Health,” Environ. Health Perspect., 113(8), pp. 934–946. [CrossRef] [PubMed]
Ouertani, R. , Hamdi, A. , Amri, C. , Khalifa, M. , and Ezzaouia, H. , 2014, “ Formation of Silicon Nanowire Packed Films From Metallurgical-Grade Silicon Powder Using a Two-Step Metal-Assisted Chemical Etching Method,” Nanoscale Res. Lett., 9(1), p. 574. [CrossRef] [PubMed]
Qiu, T. , and Chu, P. K. , 2008, “ Self-Selective Electroless Plating: An Approach for Fabrication of Functional 1D Nanomaterials,” Mater. Sci. Eng., R, 61(1–6), pp. 59–77. [CrossRef]
Dam, D. T. , Wang, X. , and Lee, J.-M. , 2014, “ Graphene/NiO Nanowires: Controllable One-Pot Synthesis and Enhanced Pseudocapacitive Behavior,” ACS Appl. Mater. Interfaces, 6(11), pp. 8246–8256. [CrossRef] [PubMed]
Moulder, J. F. , and Chastain, J. , 1995, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, Perkin-Elmer Corporation, Eden Prairie, MN.
Ram, P. , Singh, J. , Ramamohan, T. , Venkatachalam, S. , and Sundarsingh, V. , 1997, “ Surface Properties of Electrodeposited a-Si:C:H:F Thin Films by X-Ray Photoelectron Spectroscopy,” J. Mater. Sci., 32(23), pp. 6305–6310. [CrossRef]
Huang, R. , and Zhu, J. , 2010, “ Silicon Nanowire Array Films as Advanced Anode Materials for Lithium-Ion Batteries,” Mater. Chem. Phys., 121(3), pp. 519–522. [CrossRef]
Szczech, J. R. , and Song, J. , 2011, “ Nanostructured Silicon for High Capacity Lithium Battery Anodes,” Energy Environ. Sci., 4(1), pp. 56–72. [CrossRef]
Zuo, X. X. , Zhu, J. , Muller-Buschbaum, P. , and Cheng, Y. J. , 2017, “ Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review,” Nano Energy, 31, pp. 113–143. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Number concentrations of airborne particle emissions from etching and cleaning steps for different SiNWs: (a) mean concentrations, (b)–(d) real-time concentrations from HF + AgNO3, HF + H2O2, and HNO3 steps, respectively

Grahic Jump Location
Fig. 2

Size distributions of airborne particle emissions from etching and cleaning steps: (a)–(c) the HF + AgNO3 step for 90, 120, and 140 nm SiNWs, respectively, (d)–(f) the HF + H2O2 step for 90, 120, and 140 nm SiNWs, respectively, and (g)–(i) the HNO3 step for 90, 120, and 140 nm SiNWs, respectively

Grahic Jump Location
Fig. 3

Scanning electron microscopy characterizations of airborne particles from etching and cleaning steps: (a)–(c) the HF + AgNO3 step, (d)–(f) the HF + H2O2 step, and (g)–(i) the HNO3 step

Grahic Jump Location
Fig. 4

Elemental mapping of airborne particles from the HNO3 cleaning step: (a) SEM image of the top view of airborne particles and (b)–(f) C, O, Al, Si, and Ag dispersions, respectively

Grahic Jump Location
Fig. 5

Scanning electron microscopy characterizations of aqueous particles: (a)–(c) particles in HF + AgNO3 solutions for 90, 120, and 140 nm SiNWs, respectively, (d)–(f) particles in HF + H2O2 solutions for 90, 120, and 140 nm SiNWs, respectively, and (g)–(i) particles in HNO3 solutions for 90, 120, and 140 nm SiNWs, respectively

Grahic Jump Location
Fig. 6

X-ray photoelectron spectroscopy spectra of aqueous particles for 140 nm SiNWs: (a)–(d) C1 s, O 1 s, N 1 s, and Ag 3d5/2 and Ag 3d3/2 spectra, respectively, in the HF + AgNO3 solution, (e)–(h) C1 s, O 1 s, F 1 s, and Ag 3d5/2 and Ag 3d3/2 spectra, respectively, in the HF + H2O2 solution, (i)–(l) C1 s, O 1 s, F 1 s, and Ag 3d5/2 and Ag 3d3/2 spectra, respectively, in the HNO3 solution

Grahic Jump Location
Fig. 7

Electrochemical performances of SiNW electrodes: (a) charge–discharge voltage profiles of LIB electrodes with different SiNWs between 0 and 2.0 V and (b) cycling performance LIB electrode with 90 nm SiNWs at 100 mA g−1after initial activation processes at 50 mA g−1 for two cycles

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In