Abstract

Truck platooning closely regulates gaps between heavy-duty freight trucks to exploit slipstream effects for reducing aerodynamic friction—and therefore reducing engine effort and fuel usage. Currently deployed applications of this have been classically actuated through error-correcting PID feedback loops with connectivity amongst trucks in a fleet to form a connected and adaptive cruise control law that attenuates disturbances between trucks to maintain tolerable gaps. Typically, performance of such systems is challenged by difficult, albeit not uncommon, transients when under traffic conditions and when under road grade variations. Because of this, such platooning control requires attentive and trained drivers to disengage the adaptive cruise control—which limits its potentials for reducing driver load. More advanced longitudinal motion planning under predictive optimal control can push for higher levels of autonomy under a larger range of scenarios, as well as improve fuel efficiency. Here, model predictive control for fuel-performant truck platooning is vetted in both simulation and experimentation for representative traffic and road grade routes. Several approaches are used exploiting physics-based models with and without the powertrain system, and neural network-encoded models. The fuel benefits of aerodynamic platooning are isolated from the more general eco-driving approach, which already provides fuel benefit to trucks by smartly selecting truck velocity. Results from simulation and validation in experimentation are presented—showing up to 6% benefit in fuel economy through eco-driving and an additional 3% achievable through platooning. Observed losses in fuel performance are explained by energy dissipation from braking.

References

1.
Vahidi
,
A.
, and
Sciarretta
,
A.
,
2018
, “
Energy Saving Potentials of Connected and Automated Vehicles
,”
Trans. Res. Part C: Emerg. Technol.
,
95
(
Apr.
), pp.
822
843
.
2.
Lammert
,
M. P.
,
Duran
,
A.
,
Diez
,
J.
,
Burton
,
K.
, and
Nicholson
,
A.
,
2014
, “
Effect of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass
,”
SAE Int. J. Commer. Veh.
,
7
(
2
), pp.
7
9
.
3.
Besselink
,
B.
,
Turri
,
V.
,
Van De Hoef
,
S. H.
,
Liang
,
K. Y.
,
Alam
,
A.
,
Mårtensson
,
J.
, and
Johansson
,
K. H.
,
2016
, “
Cyber-Physical Control of Road Freight Transport
,”
Proc. IEEE
,
104
(
5
), pp.
1128
1141
.
4.
Tsugawa
,
S.
,
Jeschke
,
S.
, and
Shladover
,
S. E.
,
2016
, “
A Review of Truck Platooning Projects for Energy Savings
,”
IEEE Trans. Intell. Veh.
,
1
(
1
), pp.
68
77
.
5.
Ploeg
,
J.
,
Scheepers
,
B. T.
,
Van Nunen
,
E.
,
Van De Wouw
,
N.
, and
Nijmeijer
,
H.
,
2011
, “
Design and Experimental Evaluation of Cooperative Adaptive Cruise Control
,”
2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)
,
Washington, DC
, pp.
260
265
.
6.
McAuliffe
,
B.
,
Croken
,
M.
, and
Ahmadi-Baloutaki
,
M.
,
2017
, “
Fuel-Economy Testing of a Three-Vehicle Truck Platooning System
,”
National Research Council of Canada Aerodynamics Laboratory
.
7.
McAuliffe
,
B.
,
Lammert
,
M.
,
Lu
,
X. Y.
,
Shladover
,
S.
,
Surcel
,
M. D.
, and
Kailas
,
A.
,
2018
, “
Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control
,”
SAE Technical Papers
,
2018 April
, pp.
10
12
.
8.
Stegner
,
E.
,
Ward
,
J.
,
Siefert
,
J.
,
Hoffman
,
M.
, and
Bevly
,
D. M.
,
2021
, “
Experimental Fuel Consumption Results From a Heterogeneous Four-Truck Platoon
,”
SAE Technical Papers
, pp.
1
11
.
9.
Borhan
,
H.
,
Lammert
,
M.
,
Kelly
,
K.
,
Zhang
,
C.
,
Brady
,
N.
,
Yu
,
C. S.
, and
Liu
,
J.
,
2021
, “
Advancing Platooning With ADAS Control Integration and Assessment Test Results
,”
SAE Technical Papers
, pp.
1969
1975
.
10.
Online
,
2022
, “
Autonomous Trucking Benefits — Fuel Efficiency
.”
11.
Online
,
2022
, “
Tusimple — Environmental, Social, and Governance Report
.”
12.
Alam
,
A.
,
Mårtensson
,
J.
, and
Johansson
,
K. H.
,
2015
, “
Experimental Evaluation of Decentralized Cooperative Cruise Control for Heavy-Duty Vehicle Platooning
,”
Control Eng. Pract.
,
38
(
1
), pp.
11
25
.
13.
He
,
C. R.
,
Maurer
,
H.
, and
Orosz
,
G.
,
2016
, “
Fuel Consumption Optimization of Heavy-Duty Vehicles With Grade, Wind, and Traffic Information
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061011
.
14.
Hellström
,
E.
,
Ivarsson
,
M.
,
Åslund
,
J.
, and
Nielsen
,
L.
,
2009
, “
Look-Ahead Control for Heavy Trucks to Minimize Trip Time and Fuel Consumption
,”
Control Eng. Pract.
,
17
(
2
), pp.
245
254
.
15.
Turri
,
V.
,
Besselink
,
B.
, and
Johansson
,
K. H.
,
2017
, “
Cooperative Look-Ahead Control for Fuel-Efficient and Safe Heavy-Duty Vehicle Platooning
,”
IEEE Trans. Control Syst. Technol.
,
25
(
1
), pp.
12
28
.
16.
Held
,
M.
,
Flärdh
,
O.
,
Roos
,
F.
, and
Mårtensson
,
J.
,
2020
, “
Optimal Freewheeling Control of a Heavy-Duty Vehicle Using Mixed Integer Quadratic Programming
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
13809
13815
.
17.
Liu
,
J.
,
Pattel
,
B.
,
Desai
,
A. S.
,
Hodzen
,
E.
, and
Borhan
,
H.
,
2019
, “
Fuel Efficient Control Algorithms for Connected and Automated Line-Haul Trucks
,”
2019 IEEE Conference on Control Technology and Applications (CCTA)
,
Hong Kong, China
, pp.
730
737
.
18.
Guanetti
,
J.
,
Kim
,
Y.
, and
Borrelli
,
F.
,
2018
, “
Control of Connected and Automated Vehicles: State of the Art and Future Challenges
,”
Ann. Rev. Control
,
45
(
May
), pp.
18
40
.
19.
Turri
,
V.
,
Kim
,
Y.
,
Guanetti
,
J.
,
Johansson
,
K. H.
, and
Borrelli
,
F.
,
2017
, “
A Model Predictive Controller for Non-cooperative Eco-platooning
,”
2017 American Control Conference (ACC)
,
Seattle, WA
, Vol. 3, pp.
2309
2314
.
20.
Borek
,
J.
,
Groelke
,
B.
,
Earnhardt
,
C.
, and
Vermillion
,
C.
,
2020
, “
Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1652
1664
.
21.
Wang
,
Z.
,
Bian
,
Y.
,
Shladover
,
S. E.
,
Wu
,
G.
,
Li
,
S. E.
, and
Barth
,
M. J.
,
2020
, “
A Survey on Cooperative Longitudinal Motion Control of Multiple Connected and Automated Vehicles
,”
IEEE Intell. Trans. Syst. Mag.
,
12
(
1
), pp.
4
24
.
22.
Dunbar
,
W. B.
, and
Murray
,
R. M.
,
2006
, “
Distributed Receding Horizon Control for Multi-vehicle Formation Stabilization
,”
Automatica
,
42
(
4
), pp.
549
558
.
23.
Wang
,
J. Q.
,
Li
,
S. E.
,
Zheng
,
Y.
, and
Lu
,
X. Y.
,
2015
, “
Longitudinal Collision Mitigation Via Coordinated Braking of Multiple Vehicles Using Model Predictive Control
,”
Integr. Comput. Aided Eng.
,
22
(
2
), pp.
171
185
.
24.
Dunbar
,
W. B.
, and
Caveney
,
D. S.
,
2012
, “
Distributed Receding Horizon Control of Vehicle Platoons: Stability and String Stability
,”
IEEE Trans. Automat. Control
,
57
(
3
), pp.
620
633
.
25.
Gao
,
F.
,
Li
,
S. E.
,
Zheng
,
Y.
, and
Kum
,
D.
,
2016
, “
Robust Control of Heterogeneous Vehicular Platoon With Uncertain Dynamics and Communication Delay
,”
IET Intell. Transp. Syst.
,
10
(
7
), pp.
503
513
.
26.
Ard
,
T.
,
Dollar
,
R. A.
,
Vahidi
,
A.
,
Zhang
,
Y.
, and
Karbowski
,
D.
,
2020
, “
Microsimulation of Energy and Flow Effects From Optimal Automated Driving in Mixed Traffic
,”
Trans. Res. Part C: Emerg. Technol.
,
120
(
1
), p.
102806
.
27.
Ard
,
T.
,
Guo
,
L.
,
Dollar
,
R. A.
,
Fayazi
,
A.
,
Goulet
,
N.
,
Jia
,
Y.
,
Ayalew
,
B.
, and
Vahidi
,
A.
,
2021
, “
Energy and Flow Effects of Optimal Automated Driving in Mixed Traffic: Vehicle-in-the-Loop Experimental Results
,”
Trans. Res. Part C: Emerg. Technol.
,
130
(
1
), p.
103168
.
28.
Alam
,
A.
,
Besselink
,
B.
,
Turri
,
V.
,
Martensson
,
J.
, and
Johansson
,
J. H.
,
2015
, “
Heavy-Duty Vehicle Platooning for Sustainable Freight Transportation
,”
IEEE Control Syst. Mag.
,
35
(
6
), pp.
34
56
.
29.
Liang
,
K. Y.
,
Martensson
,
J.
, and
Johansson
,
K. H.
,
2013
, “
When Is It Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon?
,”
IFAC Proc.
,
46
(
21
), pp.
738
743
.
30.
Larson
,
J.
,
Liang
,
K. Y.
, and
Johansson
,
K. H.
,
2015
, “
A Distributed Framework for Coordinated Heavy-Duty Vehicle Platooning
,”
IEEE Trans. Intell. Trans. Syst.
,
16
(
1
), pp.
419
429
.
31.
Ibrahim
,
A.
,
Cicic
,
M.
,
Goswami
,
D.
,
Basten
,
T.
, and
Johansson
,
K. H.
,
2019
, “
Control of Platooned Vehicles in Presence of Traffic Shock Waves
,”
2019 IEEE Intelligent Transportation Systems Conference (ITSC)
,
Auckland, New Zealand
, ITSC 2019, pp.
1727
1734
.
32.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2015
, “Predictive Control for Linear and Hybrid Systems.” Available Online.
33.
Hewing
,
L.
,
Wabersich
,
K. P.
,
Menner
,
M.
, and
Zeilinger
,
M. N.
,
2020
, “
Learning-Based Model Predictive Control: Toward Safe Learning in Control
,”
Ann. Rev. Control Robot. Auton. Syst.
,
3
(
1
), pp.
269
296
.
34.
Rosolia
,
U.
, and
Borrelli
,
F.
,
2018
, “
Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
,”
IEEE Trans. Automat. Control
,
63
(
7
), pp.
1883
1896
.
35.
Limon
,
D.
,
Calliess
,
J.
, and
Maciejowski
,
J. M.
,
2017
, “
Learning-Based Nonlinear Model Predictive Control
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
7769
7776
.
36.
Cairano
,
S. D.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I. V.
,
2014
, “
Stochastic MPC With Learning for Driver-Predictive Vehicle Control and Its Application to HEV Energy Management
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1018
1031
.
37.
Zhang
,
C.
, and
Vahidi
,
A.
,
2011
, “
Predictive Cruise Control With Probabilistic Constraints for Eco Driving
,”
ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control
,
Arlington, VA
, pp.
233
238
.
38.
Fan
,
D.
,
Agha
,
A.
, and
Theodorou
,
E.
,
2020
, “
Deep Learning Tubes for Tube MPC
,”
Robotics: Science and Systems
,
Virtual
.
39.
Mesbah
,
A.
,
2018
, “
Stochastic Model Predictive Control With Active Uncertainty Learning: A Survey on Dual Control
,”
Ann. Rev. Control
,
45
(
1
), pp.
107
117
.
40.
Guzzella
,
L.
, and
Sciarretta
,
A.
,
2013
,
Vehicle Propulsion Systems
, 3rd ed.,
Springer Berlin, Heidelberg
.
41.
Davila
,
A.
,
Aramburu
,
E.
, and
Freixas
,
A.
,
2013
, “
Making the Best Out of Aerodynamics: Platoons
,”
SAE Technical Papers
,
2
.
42.
Vahidi
,
A.
, and
Eskandarian
,
A.
,
2002
, “
Influence of Preview Uncertainties in the Preview Control of Vehicle Suspensions
,”
Proc. Inst. Mech. Eng. Part K: J Multi-body Dyn
,
216
(
4
), pp.
295
301
.
43.
Maciejowski
,
J. M.
,
2002
,
Predictive Control With Constraints
,
Pearson
,
London, UK
.
44.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, {ICLR}
,
San Diego, CA
.
45.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi—A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program Comput.
,
11
(
1
), pp.
1
36
.
46.
Online
,
2022
, “Software IPG Automotive.”
47.
National Renewable Energy Laboratory
,
2022
, “
Fleet DNA Project Data
.”
48.
Online
,
2022
, “
ADEPT (Advanced Dynamic Efficient Powertrain Technology)
,”
Cummins Inc.
49.
Zanelli
,
A.
,
Domahidi
,
A.
,
Jerez
,
J.
, and
Morari
,
M.
,
2017
, “
FORCES NLP: An Efficient Implementation of Interior-Point Methods for Multistage Nonlinear Nonconvex Programs
,”
Int. J. Control
,
93
(
1
), pp.
13
29
.
You do not currently have access to this content.