The nonlinear mechanical behavior of fetal dura mater was tested experimentally and compared to two published nonlinear material strain energy functions, the Mooney-Rivlin and the Skalak, Tozeren, Zarda, and Chien (STZC). The STZC constitutive relations best fit the behavior of the dura mater and were used to describe quantitatively its stiffness. Runge-Kutta numerical procedures were used to fit the theoretical data to the experimental results. The material’s stiffness was positively correlated with fetal weight (r = 0.67, p<0.05). These results are discussed and directions for future research indicated.

This content is only available via PDF.
You do not currently have access to this content.