An adaptive technique for the estimation of the time history of aortic pressure (from applied voltage and position feedback) has been designed, implemented, and bench tested using the Penn State Electric Ventricular Assist Device (EVAD). This method, known in the field of automatic control as a dynamic observer, utilizes gains which were determined using experimental data collected while the EVAD was running on a mock circulatory system. An adaptive scheme provides the observer with a method of changing its initial conditions on a stroke-by-stroke basis which improves observer performance. In both determining the feedback gains and developing the adaptation scheme, a range of beat rates and pressure loads was taken into account to yield satisfactory observer performance over a range of operating conditions. The observer was implemented, its performance was verified in vitro and results are reported. In the six experimental operating conditions, the beat rate ranged from 56-104 beats per minute (bpm) and the span of the mean systolic aortic pressure was 10.7-18.7 kPa (80–140 mmHg). For these cases, the mean deviation between the actual and estimated aortic pressure during the latter two-thirds of systole was 0.41 kPa (3.1 mmHg).

This content is only available via PDF.
You do not currently have access to this content.