The intraluminal thrombus (ILT) commonly found within abdominal aortic aneurysm (AAA) may serve as a barrier to oxygen diffusion from the lumen to the inner layers of the aortic wall. The purpose of this work was to address this hypothesis and to assess the effects of AAA bulge diameter (dAAA) and ILT thickness (δ) on the oxygen flow. A hypothetical, three-dimensional, axisymmetric model of AAA containing ILT was created for computational analysis. Commercial software was utilized to estimate the volume flow of O2 per cell, which resulted in zero oxygen tension at the AAA wall. Solutions were generated by holding one of the two parameters fixed while varying the other. The supply of O2 to the AAA wall increases slightly and linearly with dAAA for a fixed δ. This slight increase is due to the enlarged area through which diffusion of O2 may take place. The supply of O2 was found to decrease quickly with increasing δ for a fixed dAAA due to the increased resistance to O2 transport by the ILT layer. The presence of even a thin, 3 mm ILT layer causes a diminished O2 supply (less than 4 × 10−10 μmol/min/cell). Normally functioning smooth muscle cells require a supply of 21 × 10−10 μmol/min/cell. Thus, our analysis serves to support our hypothesis that the presence of ILT alters the normal pattern of O2 supply to the AAA wall. This may lead to hypoxic cell dysfunction in the AAA wall, which may further lead to wall weakening and increased potential for rupture.

1.
Adolph
R.
,
Vorp
D. A.
,
Steed
D. L.
,
Webster
M. W.
,
Kameneva
M. K.
, and
Watkins
S. C.
,
1997
, “
Cellular Content and Permeability of Intraluminal Thrombus in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
, Vol.
25
, pp.
916
926
.
2.
Berggren
S. M.
,
1942
, “
The Oxygen Deficit of Arterial Blood Caused by Nonventilating Parts of the Lungs
,”
Acta Physiol. Scand.
, Vol.
4
,
Suppl. 11
, pp.
1
125
.
3.
Bluestein
D.
,
Niu
L.
,
Schoephoerster
R. T.
, and
Dewanjee
M. K.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
118
, pp.
280
286
.
4.
Budwig
R.
,
Elger
D.
,
Hooper
H.
, and
Slippy
J.
,
1993
, “
Steady Flow in Abdominal Aortic Aneurysm Models
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
418
423
.
5.
Clark
D. K.
,
Erdmann
W.
,
Halsey
J. H.
, and
Strong
E.
,
1977
, “
Oxygen Diffusion, Conductivity and Solubility Coefficients in the Microaera of the Brain
,”
Adv. Exp. Med. Biol.
, Vol.
94
, pp.
697
704
.
6.
Dill
D. B.
, and
Forbes
W. H.
,
1941
, “
Respiratory and Metabolic Effects of Hypothermia
,”
Am. J. Physiol.
, Vol.
132
, pp.
685
697
.
7.
Dobrin
P. B.
,
1989
, “
Pathophysiology and Pathogenesis of Aortic Aneurysms: Current Concepts
,”
Surg. Clinics N. Am.
, Vol.
69
, pp.
687
703
.
8.
Gabella
G.
,
1976
, “
Structural Changes in Smooth Muscle Cells During Isotonic Contraction
,”
Cell. Tiss. Res.
, Vol.
170
, pp.
187
201
.
9.
Grote
J.
, and
Thews
G.
,
1962
, “
Die Bedingungen Fur Die Sauerstoffversorgung Des Herzmuskelgewebes
,”
Pflu¨gers Arch.
, Vol.
276
, pp.
142
165
.
10.
Grote
J.
,
1967
, “
Die Sauerstoffiffusions Konstanten im Lungengewebe Und Wasser Und Ihre Temperaturabhangigkeit (The oxygen diffusion constant in lung tissue and water and its temperature dependency)
,”
Pflu¨gers Arch.
, Vol.
295
, pp.
245
254
.
11.
Grote
J.
,
Susskind
R.
, and
Vanpel
P.
,
1977
, “
Oxygen Diffusion Constants D and K of Tumor Tissue and Their Temperature Dependence
,”
Adv. Exp. Med. Biol.
, Vol.
94
, pp.
697
704
.
12.
Grote
J.
, and
Zender
R.
,
1975
, “
Corneal Oxygen Supply Conditions
,”
Adv. Exp. Med. Biol.
, Vol.
75
, pp.
191
198
.
13.
Inzoli
F.
,
Boschetti
F.
,
Zappa
M.
,
Longo
T.
, and
Fumero
R.
,
1993
, “
Biomechanical Factors in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Surg.
, Vol.
7
, pp.
667
674
.
14.
Johansen
K.
,
1982
, “
Aneurysms
,”
Scient. Amer.
, Vol.
247
, pp.
110
125
.
15.
Kushihashi
T.
,
Munechika
H.
,
Matsui
S.
,
Moritani
T.
,
Horichi
Y.
, and
Hishida
T.
,
1991
, “
CT of Abdominal Aortic Aneurysms: Aneurysmal Size and Thickness of Intra-Aneurysmal Thrombus as Risk Factors of Rupture
,”
Nippon Acta Radiologica
, Vol.
51
, pp.
219
227
.
16.
McAuley
C. E.
,
Steed
D. L.
, and
Webster
M. W.
,
1984
, “
Bacterial Presence in Thrombus at Elective Aneurysm Resection: Is it Clinically Significant?
Am. J. Surg.
, Vol.
147
, pp.
322
324
.
17.
Milnor, W. R., 1974, “Cardiovascular System,” Medical Physiology, VB Mountcastle, ed., CV Mosby, St. Louis, pp. 839–848.
18.
Patel
M. I.
,
Hardman
D. T. A.
,
Fisher
C. M.
, and
Appleberg
M.
,
1995
, “
Current Views on the Pathogenesis of Abdominal Aortic Aneurysms
,”
J. Amer. Coll. Surg.
, Vol.
181
, pp.
371
382
.
19.
Paul, R. J., 1980, “Chemical energetics of vascular smooth muscle,” Handbook of Physiology, Sec. 2—The Cardiovascular System, Vol. 2—Vascular Smooth Muscle, Amer. Physiol. Soc., Bethesda, MD, pp. 201–235.
20.
Peattie
R. A.
,
Asbury
C. L.
,
Bluth
E. I.
, and
Ruberti
J. W.
,
1996
a, “
Steady Flow in Models of Abdominal Aortic Aneurysms. Part I: Investigation of the Velocity Patterns
,”
J. Ultrasound Med.
, Vol.
15
, pp.
679
688
.
21.
Peattie
R. A.
,
Asbury
C. L.
,
Bluth
E. I.
, and
Riehle
T. J.
,
1996
b, “
Steady Flow in Models of Abdominal Aortic Aneurysms. Part II: Wall Stresses and Their Implication for In Vivo Thrombosis and Rupture
,”
J. Ultrasound Med.
, Vol.
15
, pp.
689
696
.
22.
Perktold
K.
,
1987
, “
On the Paths of Fluid Particles in an Axisymmetric Aneurysm
,”
J. Biomech.
, Vol.
20
, pp.
311
317
.
23.
Pillari
G.
,
Chang
J. B.
,
Zito
J.
,
Cohen
J. R.
,
Gersten
K.
,
Rizzo
A.
, and
Bach
A. M.
,
1988
, “
Computed Tomography of Abdominal Aortic Aneurysm. An In-Vivo Pathological Report With a Note on Dynamic Predictors
,”
Arch. Surg.
, Vol.
123
, pp.
727
732
.
24.
Raghavan
M. L.
,
Webster
M. W.
, and
Vorp
D. A.
,
1996
, “
Ex-vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
, Vol.
24
, pp.
573
582
.
25.
Sacks, M. S., Vorp, D. A., Raghavan, M. L., Federle, M. P., and Webster, M. W., 1997, “A Noninvasive Surface Geometric Analysis of In-Vivo Abdominal Aortic Aneurysms,” Proc. 1997 Summer Bioeng. Conf., Vol. 35, pp. 235–236.
26.
Satta
J.
,
Laara
E.
, and
Juvonen
T.
,
1996
, “
Intraluminal Thrombus Predicts Rupture of an Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
, Vol.
23
, pp.
737
739
.
27.
Steed
D. L.
,
Higgins
R. S. D.
,
Pasculle
A.
, and
Webster
M. W.
,
1993
, “
Culture of Intraluminal Thrombus During Abdominal Aortic Aneurysm Resection: Significant Contamination Is Rare
,”
Cardiovasc. Surg.
, Vol.
1
, pp.
494
498
.
28.
Stroeve
P.
,
Smith
K. A.
, and
Colton
C. K.
,
1975
, “
Facilited Diffusion of Oxygen in Red Blood Cell Suspensions
,”
Adv. Exp. Med. Biol.
, Vol.
75
, pp.
191
198
.
29.
Stroeve
P.
,
Colton
C.
, and
Smith
K. A.
,
1976
, “
Steady State Diffusion of Oxygen in Red Blood Cell and Model Suspensions
,”
AIChE J.
, Vol.
22
, pp.
1133
1142
.
30.
Vorp
D. A.
,
Federspiel
W. J.
, and
Webster
M. W.
,
1996
a, “
Does Laminated Intraluminal Thrombus Within Abdominal Aortic Aneurysm Cause Anoxia of the Aortic Wall?
J. Vasc. Surg.
, Vol.
23
, pp.
540
541
.
31.
Vorp
D. A.
,
Gorcsan
J.
,
Mandarino
W. A.
, and
Webster
M. W.
,
1996
b, “
The Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Noninvasive Method
,”
Cardiovasc. Surg.
, Vol.
4
, pp.
732
739
.
32.
Vorp
D. A.
,
Raghavan
M. L.
,
Muluk
S. C.
,
Makaroun
M. S.
,
Steed
D. L.
, and
Webster
M. W.
,
1996
c, “
Wall Strength and Stiffness of Aneurysmal and Nonaneurysmal Abdominal Aorta
,”
Ann. NY Acad. Sci.
, Vol.
800
, pp.
274
277
.
33.
Vorp
D. A.
,
Nemoto
E. M.
,
Pirris
J. P.
,
Melick
J. A.
, and
Webster
M. W.
,
1997
, “
Intraoperative Measurement of pO2 in Abdominal Aortic Aneurysm: Effect of Intraluminal Thrombus
” (abstract),
Cardiovasc. Med. Sci.
, Vol.
1
, p.
66
66
.
34.
Williams
R. D.
, and
Fisher
F. W.
,
1977
, “
Aneurysm Contents as a Source of Graft Infection
,”
Arch. Surg.
, Vol.
112
, pp.
415
416
.
35.
Wilson
D. F.
,
Erecinska
M.
,
Drown
C.
, and
Silver
I. A.
,
1979
, “
The Oxygen Dependence of Cellular Energy Metabolism
,”
Arch. Biochem. Biophys.
, Vol.
195
, pp.
485
493
.
36.
Wolf
Y. G.
,
Thomas
W. S.
,
Brennan
F. J.
,
Goff
W. G.
,
Sise
M. J.
, and
Bernstein
E. F.
,
1994
, “
CT Scan Findings Associated With Rapid Expansion of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
, Vol.
20
, pp.
529
538
.
37.
Wolinsky
H.
, and
Glagov
S.
,
1967
, “
Nature of Species Differences in the Medial Distribution of Aortic Vasa Vasorum in Mammals
,”
Circ. Res.
, Vol.
20
, pp.
409
421
.
38.
Zatina
M. A.
,
Zarins
C. K.
,
Gewertz
B. L.
, and
Glagov
S.
,
1984
, “
Role of Medial Lamellar Architecture in the Pathogenesis of Aortic Aneurysms
,”
J. Vasc. Surg.
, Vol.
1
, pp.
442
448
.
This content is only available via PDF.
You do not currently have access to this content.