This study examined the fluid dynamics of a textured blood-contacting surface using a computational fluid-dynamic modeling technique. The texture consisted of a regular array of microfibers of length 50 or 100 μm, spaced 100 μm apart, projecting perpendicularly to the surface. The results showed that the surface texture served as a flow-retarding solid boundary for a laminar viscous flow, resulting in a lowered wall shear stress on the base-plane surface. However, the maximum wall shear stress on the fibers was much higher than the shear stress on the nontextured base plane. At all fractions of fiber height down past 10 μm, the permeability of the textured region greatly exceeded the analytically predictable permeability of an equivalent array of infinite-height fibers. The lowered surface shear stress appears to explain in part the enhanced deposition of formed blood elements on the textured surface.

1.
Edmunds
,
L. H.
, Jr.
,
1995
, “
Breaking the Blood–Biomaterial Barrier
,”
ASAIO J.
,
41
, pp.
824
830
.
2.
Feijen, J., Engbers, J. G. A., Terlingen, C. J., Van Delden, C. J., Poot, A. A., and Vaudaux, P., 1996, “Surface Modifications of Polymeric Materials for Application in Artificial Heart and Circulatory Assist Devices,” Artificial Heart 5, T. Akutsu and H. Koyanagi, eds., Springer-Verlag, Tokyo, pp. 3–18.
3.
Graham
,
T. R.
,
Dasse
,
K.
,
Coumbe
,
A.
,
Salih
,
V.
,
Marrinan
,
M. T.
,
Frazier
,
O. H.
, and
Lewis
,
C. T.
,
1990
, “
Neointimal Development on Textured Biomaterial Surface During Clinical Use of an Implantable Left Ventricular Assist Device
,”
Eur. J. Cardiothorac. Surg.
,
4
, pp.
182
190
.
4.
Slater
,
J. P.
,
Rose
,
E. A.
,
Levin
,
H. R.
,
Frazier
,
O. H.
,
Roberts
,
J. K.
,
Weinberg
,
A. D.
, and
Oz
,
M. C.
,
1996
, “
Low Thromboembolic Risk Without Anticoagulation Using Advanced-Design Left Ventricular Assist Devices
,”
Ann. Thoracic Surgery
,
62
, pp.
1321
1328
.
5.
Fujisawa
,
N.
,
Poole-Warren
,
L. A.
,
Woodard
,
J. C.
,
Bertram
,
C. D.
, and
Schindhelm
,
K.
,
1999
, “
A Novel Textured Surface for Blood-Contact
,”
Biomaterials
,
20
, pp.
955
962
.
6.
CFX/CFD-FLOW3D User’s Guide, 1994, AEA Technology Plc, Oxfordshire, pp. 119, 321–331.
7.
Jackson
,
G. W.
, and
James
,
D. F.
,
1986
, “
The Permeability of Fibrous Porous Media
,”
Can. J. Chem. Eng.
,
64
, pp.
364
374
.
8.
Fujisawa
,
N.
,
Odell
,
R. A.
,
Poole-Warren
,
L. A.
,
Bertram
,
C. D.
,
Woodard
,
J. C.
, and
Schindhelm
,
K.
,
2000
, “
Acute Cellular Interaction With Textured Surfaces in Blood-Contact
,”
J. Biomed. Mater. Res.
,
52
, pp.
517
527
.
9.
Doyle
,
P. S.
,
Shaqfeh
,
E. S. G.
, and
Gast
,
A. P.
,
1998
, “
Rheology of Polymer Brushes: A Brownian Dynamics Study
,”
Macromolecules
,
31
, pp.
5474
5486
.
10.
Vogel, S., 1988, Life’s Devices: The Physical World of Animals and Plants, Princeton University, Princeton, p. 113.
11.
Eckman
,
J. E.
,
Nowell
,
A. R. M.
, and
Jumars
,
P. A.
,
1981
, “
Sediment Destabilization by Animal Tubes
,”
J. Mar. Res.
,
39
, pp.
361
374
.
You do not currently have access to this content.