Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50Rem300, corresponding to a range of peak Reynolds numbers 262.5Repeak1575. The vortex dynamics induced by pulsatile flow in AAAs is characterized by a sequence of five different flow phases in one period of the flow cycle. Hemodynamic disturbance is evaluated for a modified set of indicator functions, which include wall pressure pw, wall shear stress τw, and Wall Shear Stress Gradient (WSSG). At peak flow, the highest shear stress and WSSG levels are obtained downstream of both aneurysms, in a pattern similar to that of steady flow. Maximum values of wall shear stresses and wall shear stress gradients obtained at peak flow are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.

1.
Ernst
,
C.
,
1993
, “
Abdominal Aortic Aneurysm
,”
N. Engl. J. Med.
,
328
, No.
16
, pp.
1167
1172
.
2.
Wille
,
S.
,
1981
, “
Pulsatile Pressure and Flow in an Arterial Aneurysm Simulated in a Mathematical Model
,”
J. Biomed. Eng.
,
3
, pp.
153
158
.
3.
Perktold
,
K.
,
Gruber
,
K.
,
Kenner
,
T.
, and
Florian
,
H.
,
1984
, “
Calculation of Pulsatile Flow and Particle Paths in an Aneurysm-Model
,”
Basic Res. Cardiol.
,
79
, pp.
253
261
.
4.
Perktold
,
K.
,
1987
, “
On the Paths of Fluid Particles in an Axisymmetrical Aneurysm
,”
J. Biomech.
,
20
, No.
3
, pp.
311
417
.
5.
Fukushima
,
T.
,
Matsusawa
,
T.
, and
Homma
,
T.
,
1989
, “
Visualization and Finite Element Analysis of Pulsatile Flow in Models of the Abdominal Aortic Aneurysm
,”
Biorheology
,
26
, pp.
109
130
.
6.
Taylor
,
T.
, and
Yamaguchi
,
T.
,
1994
, “
Three-Dimensional Simulation of Blood Flow in an Abdominal Aortic Aneurysm—Steady and Unsteady Flow Cases
,”
ASME J. Biomech. Eng.
,
116
, pp.
89
97
.
7.
Elger, D., Slippy, J., Budwig, R., Khraishi, T., and Johansen K., 1995, “A Numerical Study of the Hemodynamics in a Model Abdominal Aortic Aneurysm (AAA),” Proc. ASME Symposium on Biomedical Fluids Engineering, R. A. Gerbsch and K. Ohba, eds., ASME FED-Vol. 212, pp. 15–22.
8.
Khraishi, T., Elger, D., Budwig, R., and Johansen K., 1996, “The Effects of Modeling Parameters on the Hemodynamics of an Abdominal Aortic Aneurysm (AAA),” Proc. 1996 ASME Fluids Engineering Division Summer Meeting, ASME FED-Vol. 237, pp. 349–356.
9.
Schoephoerster
,
R.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M.
,
1993
, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler. Thromb.
,
13
, No.
12
, pp.
1806
1813
.
10.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R.
, and
Dewanjee
,
M.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
,
118
, pp.
280
286
.
11.
Guzma´n
,
A.
, and
Amon
,
C.
,
1996
, “
Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging–Diverging Channels
,”
J. Fluid Mech.
,
321
, pp.
25
57
.
12.
Amon
,
C.
,
Guzma´n
,
A.
, and
Morel
,
B.
,
1996
, “
Lagrangian Chaos, Eulerian Chaos, and Mixing Enhancement in Converging–Diverging Channel Flows
,”
Phys. Fluids
,
8
, No.
5
, pp.
1192
1206
.
13.
Rodkiewicz, C., Viswanath, N., and Zajac, S., 1995, “On the Abdominal Aortic Aneurysm: Numerical and In Vitro Experimental Study,” Proc. 1st 1995 Regional Conference IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India, pp. 2.86–2.87.
14.
Viswanath
,
N.
,
Zajac
,
S.
, and
Rodkiewicz
,
C.
,
1997
, “
On the Abdominal Aortic Aneurysms: Pulsatile State Considerations
,”
Med. Eng. Phys.
,
19
, No.
4
, pp.
343
351
.
15.
Guzma´n, A., Moraga, N., and Amon, C., 1997, “Pulsatile Non-Newtonian Flow in a Double Aneurysm,” 1997 Advances in Bioengineering, ASME BED-Vol. 36, pp. 87–88.
16.
Moraga, N., Guzma´n A., and Rosas, C., 1997, “Meca´nica de Fluidos No Newtonianos de Flujo Transiente en Tuberı´a con Seccio´n Transversal Variable en el Espacio,” VI Congreso La Ingenierı´a en la Industria del Cobre, Universidad de Antofagasta, Chile, pp. 167–175.
17.
Guzma´n
,
A.
,
Moraga
,
N.
,
Mun˜oz
,
G.
, and
Amon
,
C.
,
1997
, “
Pulsatile Non-Newtonian Flow in a Converging–Diverging Tube
,”
AIChE Symp. Series
,
93
, No.
314
, pp.
288
294
.
18.
Egelhoff, C., Budwig, R., Elger, D., and Khraishi, T., 1997, “A Model Study of Pulsatile Flow Regimes in Abdominal Aortic Aneurysms,” Proc. 1997 ASME Fluids Engineering Division Summer Meeting, FED-Vol. 21, pp. 1–8.
19.
Egelhoff
,
C.
,
Budwig
,
R.
,
Elger
,
D.
,
Khraishi
,
T.
, and
Johansen
,
K.
,
1999
, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
,
32
, pp.
1319
1329
.
20.
Peattie, R., and Bluth, E., 1998, “Experimental Study of Pulsatile Flows in Models of Abdominal Aortic Aneurysms,” Proc. 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 20, No. 1, pp. 367–370.
21.
Peattie, R., Cooper, J., and Day, A., 1999, “Computational Investigation of Pulsatile Flows and Wall Stresses in Models of Abdominal Aortic Aneurysms,” Proc. 1st Joint BMES/EMBS Conference, p. 305.
22.
Yu
,
S.
,
2000
, “
Steady and Pulsatile Flow Studies in Abdominal Aortic Aneurysm Models Using Particle Image Velocimetry
,”
Int. J. Heat Fluid Flow
,
21
, pp.
74
83
.
23.
Satcher
,
R.
,
Bussolari
,
S.
,
Gimbrone
,
M.
, and
Dewey
,
C.
,
1992
, “
The Distribution of Forces on Model Arterial Endothelium Using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
114
, pp.
309
316
.
24.
Satcher
,
R.
, and
Dewey
,
C.
,
1996
, “
Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton
,”
Biophys. J.
,
71
, pp.
109
118
.
25.
DePaola
,
N.
,
Gimbrone
,
M.
,
Davies
,
P.
, and
Dewey
,
C.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
, No.
11
, pp.
1254
1257
.
26.
Davies
,
P.
,
Mundel
,
T.
, and
Barbee
,
K.
,
1995
, “
A Mechanism for Heterogeneous Endothelial Responses to Flow In Vivo and In Vitro
,”
J. Biomech.
,
28
, No.
12
, pp.
1553
1560
.
27.
Lei, M., and Kleinstreuer, C., 1996, “The Zero-Tension Hypothesis for the Mechanism of Atherogenesis and the Wall Shear Stress Gradient (WSSG) Predictor Equation,” 1996 Advances in Bioengineering, ASME BED-Vol. 33, pp. 211–212.
28.
Tardy
,
Y.
,
Resnick
,
N.
,
Nagel
,
T.
,
Gimbrone
,
M.
,
Dewey
,
C.
,
1997
, “
Shear Stress Gradients Remodel Endothelial Monolayers in Vitro via a Cell Proliferation-Migration-Loss Cycle
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
, pp.
3102
3106
.
29.
Graboswki
,
E.
,
1995
, “
Thrombolysis, Flow, and Vessel Wall Interactions
,”
J. Vascular Interventional Radi.
6
, No.
6
, Pt 2 pp.
25S–29S
25S–29S
.
30.
Finol, E., and Amon, C., 2000, “Pulsatile Flow Hemodynamics in Abdominal Aortic Aneurysms,” Proc. V International Congress of Numerical Methods in Engineering and Applied Sciences—CIMENICS 2000, Troyani, N., and Cerrolaza, M., eds., Sociedad Venezolana de Me´todos Nume´ricos en Ingenierı´a, Caracas, Venezuela, pp. CI81–CI90.
31.
Finol, E., and Amon, C., 2000, “Momentum Transfer in Abdominal Aortic Aneurysms: The Effect of Aneurysm Size in Steady Flow Hemodynamics,” Proc. 34th ASME National Heat Transfer Conference—NHTC 2000, No. NHTC2000-12205.
32.
McDonald, D., 1960, Blood Flow in Arteries, Wilkins & Wilkins, Baltimore, MD.
33.
Albritton, E., 1951, Standard Values in Blood, United States Air Force, Wright Air Development Center, pp. 5–7.
34.
Mills
,
C.
,
Gabe
,
I.
,
Gault
,
J.
,
Mason
,
D.
,
Ross
,
J.
Jr.
,
Braunwald
,
E.
, and
Shillingford
,
J.
,
1970
, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
,
4
, pp.
405
417
.
35.
Pedersen
,
E.
,
Yoganathan
,
A.
, and
Lefebvre
,
X.
,
1992
, “
Pulsatile Flow Visualization in a Model of the Human Abdominal Aorta and Aortic Bifurcation
,”
J. Biomech.
,
25
, No.
8
, pp.
935
944
.
36.
Pedersen
,
E.
,
Sung
,
H.
,
Burlson
,
A.
, and
Yoganathan
,
A.
,
1993
, “
Two-Dimensional Velocity Measurements in a Pulsatile Flow Model of the Normal Abdominal Aorta Simulating Different Hemodynamic Conditions
,”
J. Biomech.
,
26
, No.
10
, pp.
1237
1247
.
37.
Milnor, W., 1989, Hemodynamics, Wilkins & Wilkins, Baltimore, MD, 2nd ed.
38.
Maier
,
S.
,
Meier
,
D.
,
Boesiger
,
P.
,
Moser
,
U.
, and
Vieli
,
A.
,
1989
, “
Human Abdominal Aorta: Comparative Measurements of Blood Flow With MR Imaging and Multigated Doppler US
,”
Radiology
,
171
, pp.
487
492
.
39.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G.
,
1995
, “
Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries
,”
ASME J. Biomech. Eng.
,
117
, pp.
350
357
.
40.
Patera
,
A.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
, pp.
468
488
.
41.
Amon
,
C.
,
1993
, “
Spectral Element-Fourier Method for Transitional Flows in Complex Geometries
,”
AIAA J.
,
31
, No.
1
, pp.
42
48
.
42.
Amon
,
C.
,
1995
, “
Spectral Element-Fourier Method for Unsteady Forced Convective Heat Transfer in Complex Geometry Flows
,”
J. Thermophys. Heat Transfer
,
9
, No.
2
, pp.
247
253
.
43.
Davies
,
P.
,
1997
, “
Mechanisms Involved in Endothelial Responses to Hemodynamic Forces
,”
Atherosclerosis
,
131
, Suppl pp.
S15–S17
S15–S17
.
44.
Davies
,
P.
,
Dewey
,
C.
,
Bussolari
,
S.
,
Gordon
,
E.
, and
Gimbrone
,
M.
,
1984
, “
Influence of Hemodynamic Forces on Vascular Endothelial Function
,”
J. Clin. Invest.
,
73
, pp.
1121
1129
.
45.
Davies
,
P.
,
Remuzzi
,
A.
,
Gordon
,
E.
,
Dewey
,
C.
, and
Gimbrone
,
M.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
83
, pp.
2114
2117
.
46.
Dewey
,
C.
,
Bussolari
,
S.
,
Gimbrone
,
M.
, and
Davies
,
P.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
, pp.
177
185
.
47.
Shen
,
J.
,
Luscinkas
,
F.
,
Connolly
,
A.
,
Dewey
,
C.
, and
Gimbrone
,
M.
,
1992
, “
Fluid Shear Stress Modulates Cytosolic Free Calcium in Vascular Endothelial Cells
,”
Am. J. Physiol.
,
262
, No.
2
, Pt. 1, pp.
C384–C390
C384–C390
.
48.
Muraki
,
N.
,
1983
, “
Ultrasonic Studies of the Abdominal Aorta With Special Reference to Hemodynamic Considerations on Thrombus Formation in the Abdominal Aortic Aneurysm
,”
J. Jap. College Angiol.
,
23
, pp.
401
413
.
You do not currently have access to this content.