Atherosclerotic plaque rupture is responsible for the majority of myocardial infarctions and acute coronary syndromes. Rupture is initiated by mechanical failure of the plaque cap, and thus study of the deformation of the plaque in the artery can elucidate the events that lead to myocardial infarction. Intravascular ultrasound (IVUS) provides high resolution in vitro and in vivo cross-sectional images of blood vessels. To extract the deformation field from sequences of IVUS images, a registration process must be performed to correlate material points between image pairs. The objective of this study was to determine the efficacy of an image registration technique termed Warping to determine strains in plaques and coronary arteries from paired IVUS images representing two different states of deformation. The Warping technique uses pointwise differences in pixel intensities between image pairs to generate a distributed body force that acts to deform a finite element model. The strain distribution estimated by image-based Warping showed excellent agreement with a known forward finite element solution, representing the gold standard, from which the displaced image was created. The Warping technique had a low sensitivity to changes in material parameters or material model and had a low dependency on the noise present in the images. The Warping analysis was also able to produce accurate strain distributions when the constitutive model used for the Warping analysis and the forward analysis was different. The results of this study demonstrate that Warping in conjunction with in vivo IVUS imaging will determine the change in the strain distribution resulting from physiological loading and may be useful as a diagnostic tool for predicting the likelihood of plaque rupture through the determination of the relative stiffness of the plaque constituents.

1.
National Health and Nutrition Examination Survey (NHANES), 1996, CDC/NCHS and the American Heart Association.
2.
MacIsaac
,
A. I.
,
Thomas
,
J. D.
, and
Topol
E. J.
,
1993
, “
Toward the Quiescent Coronary Plaque
,”
J. Am. Coll. Cardiol.
,
22
, pp.
1228
1241
.
3.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis with Histopathological Correlation
,”
Circulation
,
87
, pp.
1179
1187
.
4.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
, pp.
850
858
.
5.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V.
,
1989
, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
,
2
, pp.
941
944
.
6.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
,
1994
, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
,
27
, pp.
195
204
.
7.
Veress
,
A. I.
,
Cornhill
,
J. F.
,
Herderick
,
E. E.
, and
Thomas
,
J. D.
,
1998
, “
Age-Related Development of Atherosclerotic Plaque Stress: A Population-Based Finite-Element Analysis
,”
Coron Artery Dis.
,
9
, pp.
13
19
.
8.
Veress
,
A. I.
,
Vince
,
D. G.
,
Anderson
,
P. M.
,
Cornhill
,
J. F.
,
Herderick
,
E. E.
,
Klingensmith
,
J. D.
,
Kuban
,
B. D.
,
Greenberg
,
N. L.
, and
Thomas
,
J. D.
,
2000
, “
Vascular Mechanics of the Coronary Artery
,”
Z. Kardiol.
,
89
, pp.
92
100
.
9.
Nissen
,
S. E.
,
Gurley
,
J. C.
,
Grines
,
C. L.
,
Booth
,
D. C.
,
McClure
,
R.
,
Berk
,
M.
,
Fischer
,
C.
, and
DeMaria
,
A. N.
,
1991
, “
Intravascular Ultrasound Assessment of Lumen Size and Wall Morphology in Normal Subjects and Patients with Coronary Artery Disease
,”
Circulation
,
84
, pp.
1087
1099
.
10.
Bermejo
,
J.
,
Botas
,
J.
,
Garcia
,
E.
,
Elizaga
,
J.
,
Osende
,
J.
,
Soriano
,
J.
,
Abeytua
,
M.
, and
Delcan
,
J. L.
,
1998
, “
Mechanisms of Residual Lumen Stenosis after High-Pressure Stent Implantation: A Quantitative Coronary Angiography and Intravascular Ultrasound Study
,”
Circulation
,
98
, pp.
112
118
.
11.
Hanekamp
,
C. E.
,
Koolen
,
J. J.
,
Pijls
,
N. H.
,
Michels
,
H. R.
, and
Bonnier
,
H. J.
,
1999
, “
Comparison of Quantitative Coronary Angiography, Intravascular Ultrasound, and Coronary Pressure Measurement to Assess Optimum Stent Deployment
,”
Circulation
,
99
, pp.
1015
1021
.
12.
Rabbitt
,
R. D.
,
Weiss
,
J. A.
,
Christensen
,
G. E.
, and
Miller
,
M. I.
,
1995
, “
Mapping of Hyperelastic Deformable Templates Using the Finite Element Method.
,”
Proc. SPIE
,
2573
, pp.
252
265
.
13.
Bowden
,
A. E.
,
Rabbitt
,
R. D.
, and
Weiss
,
J. A.
,
1998
, “
Anatomical Registration and Segmentation by Warping Template Finite Element Models.
,”
Proc. SPIE
,
3254
, pp.
469
476
.
14.
Weiss
,
J. A.
,
Rabbitt
,
R. D.
, and
Bowden
,
A. E.
,
1998
, “
Incorporation of Medical Image Data in Finite Element Models to Track Strain in Soft Tissues
,”
Proc. SPIE
,
3254
, pp.
477
484
.
15.
Cox
,
R. H.
,
1975
, “
Anisotropic Properties of the Canine Carotid Artery in Vitro
,”
J. Biomech.
,
8
, pp.
293
300
.
16.
Cox
,
R. H.
,
1978
, “
Passive Mechanics and Connective Tissue Composition of Canine Arteries
,”
Am. J. Physiol.
,
234
, pp.
533
541
.
17.
Dobrin
,
P. B.
,
1986
, “
Biaxial Anisotropy of Dog Carotid Artery: Estimation of Circumferential Elastic Modulus
,”
J. Biomech.
,
19
, pp.
351
358
.
18.
Dobrin
,
P. B.
, and
Mrkvicka
,
R.
,
1992
, “
Estimating the Elastic Modulus of Non-Atherosclerotic Elastic Arteries
,”
J. Hypertens. Suppl.
,
10
, pp.
S7–S10
S7–S10
.
19.
Dobrin
,
P. B.
, and
Doyle
,
J. M.
,
1970
, “
Vascular Smooth Muscle and the Anisotropy of Dog Carotid Artery
,”
Circ. Res.
,
27
, pp.
105
119
.
20.
Frobert
,
O.
,
Gregersen
,
H.
, and
Bagger
,
J. P.
,
1996
, “
Mechanics of Porcine Coronary Arteries Ex Vivo Employing Impedance Planimetry: A New Intravascular Technique
,”
Ann. Biomed. Eng.
,
24
, pp.
148
155
.
21.
Patel
,
D. J.
, and
Janicki
,
J. S.
,
1970
, “
Static Elastic Properties of the Left Coronary Circumflex Artery and the Common Carotid Artery in Dogs
,”
Circ. Res.
,
27
, pp.
149
158
.
22.
Patel
,
D. J.
,
Janicki
,
J. S.
, and
Carew
,
T. E.
,
1969
, “
Static Anisotropic Elastic Properties of the Aorta in Living Dogs
,”
Circ. Res.
,
25
, pp.
765
779
.
23.
Weizsacker
,
H. W.
,
Lambert
,
H.
, and
Pascale
,
K.
,
1983
, “
Analysis of the Passive Mechanical Properties of Rat Carotid Arteries
,”
J. Biomech.
,
16
, pp.
703
715
.
24.
Loree
,
H. M.
,
Tobias
,
B. J.
,
Gibson
,
L. J.
,
Kamm
,
R. D.
,
Small
,
D. M.
, and
Lee
,
R. T.
,
1994
, “
Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools
,”
Arterioscler. Thromb.
,
14
, pp.
230
234
.
25.
Salunke
,
N. V.
, and
Topoleski
,
L. D.
,
1997
, “
Biomechanics of Atherosclerotic Plaque
,”
Crit. Rev. Biomed. Eng.
,
25
, pp.
243
285
.
26.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
, pp.
107
128
.
27.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: II. Parameter Estimation
,”
ASME J. Biomech. Eng.
,
112
, pp.
340
346
.
28.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
, pp.
333
339
.
29.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
, pp.
757
763
.
30.
Vaishnav
,
R. N.
,
Young
,
J. T.
,
Janicki
,
J. S.
, and
Patel
,
D. J.
, 1972, “Nonlinear Anisotropic Elastic Properties of the Canine Aorta,” Biophysics Journal, 12, pp. 1008–1027.
31.
Salunke
,
N. V.
,
Topoleski
,
L. D.
,
Humphrey
,
J. H.
, and
Mergner
,
W. J.
,
2001
, “
Compressive Stress-Relaxation of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
,
55
, pp.
236
241
.
32.
Veress, A. I., Bowden, A. E., Vince, D. G., Gullberg, G. T., and Rabbitt, R. D., “Strain Distribution in Coronary Arteries Determined from IVUS,” presented at Biomedical Engineering Society Annual Meeting, Seattle, Washington, 2000.
33.
Waller
,
B. F.
,
Orr
,
C. M.
,
Slack
,
J. D.
,
Pinkerton
,
C. A.
,
Van Tassel
,
J.
, and
Peters
,
T.
,
1992
, “
Anatomy, Histology, and Pathology of Coronary Arteries: A Review Relevant to New Interventional and Imaging Techniques—Part I
,”
Clinical Cardiology
,
15
, pp.
451
457
.
34.
Maker, B. N., Ferencz, R. M., and Hallquist, J. O., 1990, “NIKE3D: A Nonlinear Code for Solid and Structural Mechanics,” Lawrence Livermore National Laboratories Technical Report UCRL-MA-105208 Rev. 1.
35.
Gonzalez, R. C., and Woods, R. E., 1992, “Digital Image Processing.“ Addison-Wesley Pub. Co., Reading, Mass., pp. 187–213.
36.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1991
, “
Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
85
, pp.
273
310
.
37.
de Korte
,
C. L.
,
Woutman
,
H. A.
,
van der Steen
,
A. F.
,
Pasterkamp
,
G.
, and
Cespedes
,
E. I.
,
2000
, “
Vascular Tissue Characterization with IVUS Elastography
,”
Ultrasonics
,
38
, pp.
387
390
.
38.
Topoleski
,
L. D.
, and
Salunke
,
N. V.
,
2000
, “
Mechanical Behavior of Calcified Plaques: A Summary of Compression and Stress-Relaxation Experiments
,”
Z. Kardiol.
,
89
, pp.
85
91
.
39.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1984
, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
,
17
, pp.
35
40
.
40.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
, pp.
61
68
.
41.
Maintz
,
J. B.
, and
Viergever
,
M. A.
,
1998
, “
A Survey of Medical Image Registration
,”
Med. Image Anal
,
2
, pp.
1
36
.
42.
de Korte
,
C. L.
,
Pasterkamp
,
G.
,
van der Steen
,
A. F.
,
Woutman
,
H. A.
, and
Bom
,
N.
,
2000
, “
Characterization of Plaque Components with Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries in Vitro
,”
Circulation
,
102
, pp.
617
623
.
43.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1996
, “
Direct Measurement of Transverse Strains in Aorta
,”
Am. J. Physiol.
,
270
(
2 pt 2
), pp.
H750–H759
H750–H759
.
44.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1992
, “
Strain Distribution in Small Blood Vessels with Zero-Stress State Taken into Consideration
,”
Am. J. Physiol.
,
262
(
2 pt 2
), pp.
H544–H552
H544–H552
.
45.
Gardiner, J. C., Maker, B. N., and Weiss, J. A., 2001, “An Iterative Update Algorithm to Enforce Initial Stretch in Hyperelastic Finite Element Models of Soft Tissue,” presented at Proceedings of ASME Bioengineering Conference.
46.
Lin
,
I. E.
, and
Taber
,
L. A.
,
1995
, “
A Model for Stress-Induced Growth in the Developing Heart
,”
ASME J. Biomech. Eng.
,
117
, pp.
343
349
.
47.
Taber
,
L. A.
,
2000
, “
Modeling Heart Development
,”
J. Elast.
61
, pp.
165
19
.
48.
Weiss, J. A., Maker, B. N., and Schauer, D. A., 1995, “Treatment of Initial Stress in Hyperelastic Models of Soft Tissues,” presented at Proceeding of the 1995 Bioengineering Conference, BED-29.
49.
Arbab-Zadeh
,
A.
,
DeMaria
,
A. N.
,
Penny
,
W. F.
,
Russo
,
R. J.
,
Kimura
,
B. J.
, and
Bhargava
,
V.
,
1999
, “
Axial Movement of the Intravascular Ultrasound Probe During the Cardiac Cycle: Implications for Three-Dimensional Reconstruction and Measurements of Coronary Dimensions
,”
Am. Heart J.
,
138
, pp.
865
872
.
50.
Cothren
,
R. M.
,
Shekhar
,
R.
,
Tuzcu
,
E. M.
,
Nissen
,
S. E.
,
Cornhill
,
J. F.
, and
Vince
,
D. G.
,
2000
, “
Three-Dimensional Reconstruction of the Coronary Artery Wall by Image Fusion of Intravascular Ultrasound and Bi-Plane Angiography
,”
Int. J. Card. Imaging
,
16
, pp.
69
85
.
51.
Bay
,
B. K.
,
Yerby
,
S. A.
,
McLain
,
R. F.
, and
Toh
,
E.
,
1999
, “
Measurement of Strain Distributions within Vertebral Body Sections by Texture Correlation
,”
Spine
,
24
, pp.
10
17
.
52.
Bay
,
B. K.
,
1995
, “
Texture Correlation: A Method for the Measurement of Detailed Strain Distributions within Trabecular Bone
,”
J. Orthop. Res.
13
, pp.
258
267
.
53.
Chu
,
T. C.
,
Ranson
,
W. F.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
, pp.
232
244
.
54.
McVeigh
,
E. R.
, and
Bolster
,
B. D.
Jr.
,
1998
, “
Improved Sampling of Myocardial Motion with Variable Separation Tagging
,”
Magnetic Resonance in Medicine
,
39
, pp.
657
661
.
55.
Ozturk
,
C.
, and
McVeigh
,
E. R.
,
2000
, “
Four-Dimensional B-Spline Based Motion Analysis of Tagged MR Images: Introduction and in VIVO Validation
,”
Phys. Med. Biol.
,
45
, pp.
1683
1702
.
56.
Declerck
,
J.
,
Feldmar
,
J.
, and
Ayache
,
N.
,
1998
, “
Definition of a Four-Dimensional Continuous Planispheric Transformation for the Tracking and the Analysis of Left-Ventricle Motion
,”
Med. Image Anal
,
2
, pp.
197
213
.
57.
Shapo
,
B. M.
,
Crowe
,
J. R.
,
Erkamp
,
R.
,
Emelianov
,
S. Y.
,
Eberle
,
M. J.
, and
O’Donnell
,
M.
, 1996, “Strain Imaging of Coronary Arteries with Intraluminal Ultrasound: Experiments on an Inhomogeneous Phantom,” Ultrasound Imaging, 18, pp. 173–191.
58.
de Korte
,
C. L.
,
van der Steen
,
A. F.
,
Cepedes
,
E. I.
,
Pasterkamp
,
G.
,
Carlier
,
S. G.
,
Mastik
,
F.
,
Schoneveld
,
A. H.
,
Serruys
,
P. W.
, and
Bom
,
N.
,
2000
, “
Characterization of Plaque Components and Vulnerability with Intravascular Ultrasound Elastography
,”
Phys. Med. Biol.
,
45
, pp.
1465
1475
.
You do not currently have access to this content.