An original homogenization method was used to analyze the nonlinear elastic properties of epithelial cells probed by magnetic twisting cytometry. In this approach, the apparent rigidity of a cell with nonlinear mechanical properties is deduced from the mechanical response of the entire population of adherent cells. The proposed hyperelastic cell model successfully accounts for the variability in probe-cell geometrical features, and the influence of the cell–substrate adhesion. Spatially distributed local secant elastic moduli had amplitudes ranging from 10 to 400 Pa. The nonlinear elastic behavior of cells may contribute to the wide differences in published results regarding cell elasticity moduli.

1.
Davies
,
P. F.
,
Robotewskyj
,
A.
, and
Griem
,
M. L.
,
1993
, “
Endothelial Cell Adhesion in Real Time. Measurements In Vitro by Tandem Scanning Confocal Image Analysis
,”
J. Clin. Invest.
,
91
(
6
), pp.
2640
2652
.
2.
Forgacs
,
G.
,
1995
, “
Biological Specificity and Measurable Physical Properties of Cell Surface Receptors and Their Possible Role in Signal Transduction Through the Cytoskeleton
,”
Biochem. Cell Biol.
,
73
(
7–8
), pp.
317
326
.
3.
Ingber
,
D. E.
,
1997
, “
Tensegrity: The Architectural Basis of Cellular Mechanotransduction
,”
Annu. Rev. Physiol.
,
59
, pp.
575
599
.
4.
Hamill
,
O. P.
, and
Martinac
,
B.
,
2001
, “
Molecular Basis of Mechanotransduction in Living Cells
,”
Physiol. Rev.
,
81
(
2
), pp.
685
740
.
5.
Ricci
,
D.
,
Tedesco
,
M.
, and
Grattarola
,
M.
,
1997
, “
Mechanical and Morphological Properties of Living 3T6 Cells Probed Via Scanning Force Microscopy
,”
Microsc. Res. Tech.
,
36
, pp.
165
171
.
6.
Pourati
,
J.
,
Maniotis
,
A.
,
Spiegel
,
D.
,
Schaffer
,
J. L.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
,
Ingber
,
D. E.
,
Stamenovic
,
D.
, and
Wang
,
N.
,
1998
, “
Is Cytoskeletal Tension a Major Determinant of Cell Deformability in Adherent Endothelial Cells?
Am. J. Physiol.
,
274
(
5
Pt 1), pp.
C1283–C1289
C1283–C1289
.
7.
Ingber
,
D. E.
,
with Heidemann
,
S. R.
,
Lamoureux
,
P.
, and
Buxbaum
,
R. E.
,
2000
, “
Opposing Views on Tensegrity as a Structural Framework for Understanding Cell Mechanics
,”
J. Appl. Physiol.
,
89
(
4
), pp.
1663
1670
.
8.
Rahman
,
A.
,
Tseng
,
Y.
, and
Wirtz
,
D.
,
2002
, “
Micromechanical Coupling Between Cell Surface Receptors and RGD Peptides
,”
Biochem. Biophys. Res. Commun.
,
296
(
3
), pp.
771
778
.
9.
Choquet
,
D.
,
Felsenfeld
,
D. P.
, and
Sheetz
,
M. P.
,
1997
, “
Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages
,”
Cell
,
88
(
1
), pp.
39
48
.
10.
Sato
,
M.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1996
, “
Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
29
(
4
), pp.
461
467
.
11.
Thoumine
,
O.
, and
Ott
,
A.
,
1997
, “
Time Scale Dependent Viscoelastic and Contractile Regimes in Fibroblasts Probed by Microplate Manipulation
,”
J. Cell. Sci.
,
110
(Pt 17), pp.
2109
2116
.
12.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
,
1993
, “
Mechanotransduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
,
260
(
5111
), pp.
1124
1127
.
13.
Wang
,
N.
, and
Ingber
,
D. E.
,
1994
, “
Control of Cytoskeletal Mechanics by Extracellular Matrix, Cell Shape, and Mechanical Tension
,”
Biophys. J.
,
66
(
6
), pp.
2181
2189
.
14.
Wang
,
N.
, and
Ingber
,
D. E.
,
1995
, “
Probing Transmembrane Mechanical Coupling and Cytomechanics Using Magnetic Twisting Cytometry
,”
Biochem. Cell Biol.
,
73
(
7–8
), pp.
327
335
.
15.
Wang
,
N.
,
Planus
,
E.
,
Pouchelet
,
M.
,
Fredberg
,
J. J.
, and
Barlovatz-Meimon
,
G.
,
1995
, “
Urokinase Receptor Mediates Mechanical Force Transfer Across the Cell Surface
,”
Am. J. Physiol.
,
268
(
4
Pt 1),
C1062–C1066
C1062–C1066
.
16.
Wendling
,
S.
,
Planus
,
E.
,
Laurent
,
V.
,
Barbe
,
L.
,
Mary
,
A.
,
Oddou
,
C.
, and
Isabey
,
D.
,
2000
, “
Role of Cellular Tone and Microenvironment on Cytoskeleton Stiffness Predicted by Tensegrity Model
,”
Eur. Phys. J.: Appl. Phys.
,
9
, pp.
51
62
.
17.
Laurent
,
V. M.
,
Henon
,
S.
,
Planus
,
E.
,
Fodil
,
R.
,
Balland
,
M.
,
Isabey
,
D.
, and
Gallet
,
F.
,
2002
, “
Assessment of Mechanical Properties of Adherent Living Cells by Bead Micromanipulation: Comparison of Magnetic Twisting Cytometry vs Optical Tweezers
,”
J. Biomech. Eng.
,
124
(
4
), pp.
408
421
.
18.
Laurent
,
V. M.
,
Fodil
,
R.
,
Canadas
,
P.
,
Fereol
,
S.
,
Louis
,
B.
,
Planus
,
E.
, and
Isabey
,
D.
,
2003
, “
Partitioning of Cortical and Deep Cytoskeleton Responses From Transient Magnetic Bead Twisting
,”
Ann. Biomed. Eng.
,
31
(
10
),
1263
1278
.
19.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1990
, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
J. Biomech. Eng.
,
112
(
3
), pp.
263
268
.
20.
Hubmayr
,
R. D.
,
Shore
,
S. A.
,
Fredberg
,
J. J.
,
Planus
,
E.
,
Panettieri
, Jr.,
R. A.
,
Moller
,
W.
,
Heyder
,
J.
, and
Wang
,
N.
,
1996
, “
Pharmacological Activation Changes Stiffness of Cultured Human Airway Smooth Muscle Cells
,”
Am. J. Physiol.
,
271
(
5
Pt 1), pp.
C1660–C1668
C1660–C1668
.
21.
Potard
,
U. S.
,
Butler
,
J. P.
, and
Wang
,
N.
,
1997
, “
Cytoskeletal Mechanics in Confluent Epithelial Cells Probed Through Integrins and E-Cadherins
,”
Am. J. Physiol.
,
272
(
5
Pt 1), pp.
C1654–C1663
C1654–C1663
.
22.
Fabry
,
B.
,
Maksym
,
G.
,
Hubmayr
,
R.
,
Butler
,
J.
, and
Fredberg
,
J.
,
1999
, “
Implications of Heterogeneous Bead Behavior on Cell Mechanical Properties Measured With Magnetic Twisting Cytometry
,”
J. Magn. Magn. Mater.
,
194
, pp.
120
125
.
23.
Fabry
,
B.
,
Maksym
,
G. N.
,
Butler
,
J. P.
,
Glogauer
,
M.
,
Navajas
,
D.
, and
Fredberg
,
J. J.
,
2001
, “
Scaling the Microrheology of Living Cells
,”
Phys. Rev. Lett.
,
87
(
14
), pp.
1481
1502
.
24.
Fabry
,
B.
,
Maksym
,
G. N.
,
Shore
,
S. A.
,
Moore
,
P. E.
,
Panettieri
,
R. A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2001
, “
Selected Contribution: Time Course and Heterogeneity of Contractile Responses in Cultured Human Airway Smooth Muscle Cells
,”
J. Appl. Physiol.
,
91
, pp.
986
994
.
25.
Thoumine
,
O.
,
Ott
,
A.
,
Cardoso
,
O.
, and
Meister
,
J. J.
,
1999
, “
Microplates: A New Tool for Manipulation and Mechanical Perturbation of Individual Cells
,”
J. Biochem. Biophys. Methods
,
39
(
1–2
), pp.
47
62
.
26.
Svoboda
,
K.
, and
Block
,
S. M.
,
1994
, “
Biological Applications of Optical Forces
,”
Annu. Rev. Biophys. Biomol. Struct.
,
23
, pp.
247
285
.
27.
Sheetz
,
M. P.
,
1998
, “
Laser Tweezers in Cell Biology. Introduction
,”
Methods Cell Biol.
,
55
, pp.
xi–xii
xi–xii
.
28.
Henon
,
S.
,
Lenormand
,
G.
,
Richert
,
A.
, and
Gallet
,
F.
,
1999
, “
A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers
,”
Biophys. J.
,
76
(
2
), pp.
1145
1151
.
29.
Lenormand
,
G.
,
Henon
,
S.
,
Richert
,
A.
,
Simeon
,
J.
, and
Gallet
,
F.
,
2001
, “
Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton
,”
Biophys. J.
,
81
(
1
), pp.
43
56
.
30.
Bausch
,
A. R.
,
Ziemann
,
F.
,
Boulbitch
,
A. A.
,
Jacobson
,
K.
, and
Sackmann
,
E.
,
1998
, “
Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry
,”
Biophys. J.
,
75
(
4
), pp.
2038
2049
.
31.
Bausch
,
A. R.
,
Mo¨ller
,
W.
, and
Sackmann
,
E.
,
1999
, “
Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers
,”
Biophys. J.
,
76
, pp.
573
579
.
32.
Shroff
,
S. G.
,
Saner
,
D. R.
, and
Lal
,
R.
,
1995
, “
Dynamic Micromechanical Properties of Cultured Rat Atrial Myocytes Measured by Atomic Force Microscopy
,”
Am. J. Physiol.
,
269
(
1
Pt 1), pp.
C286–C292
C286–C292
.
33.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
,
2002
, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
,
82
(
5
), pp.
2798
2810
.
34.
Bausch
,
A. R.
,
Hellerer
,
U.
,
Essler
,
M.
,
Aepfelbacher
,
M.
, and
Sackmann
,
E.
,
2001
, “
Rapid Stiffening of Integrin Receptor–Actin Linkages in Endothelial Cells Stimulated With Thrombin: A Magnetic Bead Microrheology Study
,”
Biophys. J.
,
80
(
6
), pp.
2649
2657
.
35.
Laurent
,
V. M.
,
Planus
,
E.
,
Fodil
,
R.
, and
Isabey
,
D.
,
2003
, “
Mechanical Assessment by Magnetocytometry of the Cytosolic and Cortical Cytoskeletal Compartments in Adherent Epithelial Cells
,”
Biorheology
,
40
(
1–3
), pp.
235
240
.
36.
Stamenovic
,
D.
,
Ingber
,
D. E.
,
Wang
,
N.
, and
Fredberg
,
J. J.
,
1996
, “
A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity
,”
J. Theor. Biol.
,
181
, pp.
125
136
.
37.
Wendling
,
S.
,
Oddou
,
C.
, and
Isabey
,
D.
,
1999
, “
Stiffening Response of a Cellular Tensegrity Model
,”
J. Theor. Biol.
,
196
(
3
), pp.
309
325
.
38.
Stamenovic
,
D.
, and
Coughlin
,
M. F.
,
2000
, “
A Quantitative Model of Cellular Elasticity Based on Tensegrity
,”
J. Biomech. Eng.
,
122
(
1
), pp.
39
43
.
39.
Canadas
,
P.
,
Laurent
,
V. M.
,
Oddou
,
C.
,
Isabey
,
D.
, and
Wendling
,
S.
,
2002
, “
A Cellular Tensegrity Model to Analyze the Structural Viscoelasticity of the Cytoskeleton
,”
J. Theor. Biol.
,
218
(
2
), pp.
155
173
.
40.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
,
2002
, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
(
2
), pp.
177
187
.
41.
Charras
,
G. T.
, and
Horton
,
M. A.
,
2002
, “
Determination of Cellular Strains by Combined Atomic Force Microscopy and Finite Element Modeling
,”
Biophys. J.
,
83
(
2
), pp.
858
879
.
42.
Mijailovich
,
S. M.
,
Kojic
,
M.
,
Zivkovic
,
M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
A Finite Element Model of Cell Deformation During Magnetic Bead Twisting
,”
J. Appl. Physiol.
,
93
(
4
), pp.
1429
1436
.
43.
Bornert, M., Bretheau, T., and Gilormini, P., 2001, Homoge´ne´isation en Me´canique des Mate´riaux, Hermes Science Publications, Paris.
44.
Fodil
,
R.
,
Laurent
,
V.
,
Planus
,
E.
, and
Isabey
,
D.
,
2003
, “
Characterization of Cytoskeleton Mechanical Properties and 3D-Actin Structure in Twisted Adherent Epithelial Cells
,”
Biorheology
,
40
(
1–3
), pp.
241
245
.
45.
Schneider
,
S. W.
,
Pagel
,
P.
,
Rotsch
,
C.
,
Danker
,
T.
,
Oberleithner
,
H.
,
Radmacher
,
M.
, and
Schwab
,
A.
,
2000
, “
Volume Dynamics in Migrating Epithelial Cells Measured With Atomic Force Microscopy
,”
Pfluegers Arch.
,
439
(
3
), pp.
297
303
.
46.
Holzapfel, G. A., 2001, Nonlinear Solid Mechanics, Wiley, New York, p. 455.
47.
Costa
,
K. D.
, and
Yin
,
F. C. P.
,
1999
, “
Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy
,”
J. Biomech. Eng.
,
121
, pp.
462
469
.
48.
Yeoh
,
O. H.
,
1990
, “
Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcaizates
,”
Rubber Chem. Technol.
,
63
, pp.
792
805
.
49.
Shin
,
D.
, and
Athanasiou
,
K.
,
1999
, “
Cytoindentation for Obtaining Cell Biomechanical Properties
,”
J. Orthop. Res.
,
17
, pp.
880
890
.
50.
Kamm
,
R. D.
,
McVittie
,
A. K.
, and
Bathe
,
M.
,
2000
, “
On the Role of Continuum Models in Mechanobiology
,”
ASME International Congress—Mechanics in Biology
,
242
, pp.
1
9
.
51.
Mathur
,
A. B.
,
Collinsworth
,
A. M.
,
Reichert
,
W. M.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
,
2001
, “
Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy
,”
J. Biomech.
,
34
, pp.
1545
1553
.
52.
Fabry
,
B.
,
Maksym
,
G. N.
,
Butler
,
J. P.
,
Glogauer
,
M.
,
Navajas
,
D.
,
Taback
,
N. A.
,
Millet
,
E. J.
, and
Fredberg
,
J. J.
,
2003
, “
Time Scale and Other Invariants of Integrative Mechanical Behavior in Living Cells
,”
Phys. Rev. E
,
68
(
4
Pt 1), p.
041914
041914
.
53.
Maksym
,
G. N.
,
Fabry
,
B.
,
Butler
,
J. P.
,
Navajas
,
D.
,
Tschumperlin
,
D. J.
,
Laporte
,
J. D.
, and
Fredberg
,
J. J.
,
2000
, “
Mechanical Properties of Cultured Human Airway Smooth Muscle Cells From 0.05 to 0.4 Hz
,”
J. Appl. Physiol.
,
89
(
4
), pp.
1619
1632
.
54.
Doornaert
,
B.
,
Leblond
,
V.
,
Planus
,
E.
,
Galiacy
,
S.
,
Laurent
,
V. M.
,
Gras
,
G.
,
Isabey
,
D.
, and
Lafuma
,
C.
,
2003
, “
Time Course of Actin Cytoskeleton Stiffness and Matrix Adhesion Molecules in Human Bronchial Epithelial Cell Cultures
,”
Exp. Cell Res.
,
287
, pp.
199
208
.
55.
Wozniak
,
M.
,
Fausto
,
A.
,
Carron
,
C. P.
,
Meyer
,
D. M.
, and
Hruska
,
K. A.
,
2000
, “
Mechanically Strained Cells of the Osteoblast Lineage Organize Their Extracellular Matrix Through Unique Sites of Alphavbeta3-Integrin Expression
,”
J. Bone Miner. Res.
,
15
(
9
), pp.
1731
1745
.
56.
Mathur
,
A. B.
,
Truskey
,
G.
, and
Reichert
,
W. M.
,
2000
, “
Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells
,”
Biophys. J.
,
78
(
4
), pp.
1725
1735
.
57.
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Riveline
,
D.
,
Goichberg
,
P.
,
Tzur
,
G.
,
Sabanay
,
I.
,
Mahalu
,
D.
,
Safran
,
S.
,
Bershadsky
,
A.
,
Addadi
,
L.
et al.
,
2001
, “
Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates
,”
Nat. Cell Biol.
,
3
(
5
), pp.
466
472
.
58.
Schwarz
,
U. S.
,
Balaban
,
N. Q.
,
Riveline
,
D.
,
Bershadsky
,
A.
,
Geiger
,
B.
, and
Safran
,
S. A.
,
2002
, “
Calculation of Forces at Focal Adhesions From Elastic Substrate Data: The Effect of Localized Force and the Need for Regularization
,”
Biophys. J.
,
83
(
3
), pp.
1380
1394
.
59.
Hu
,
S.
,
Chen
,
J.
,
Fabry
,
B.
,
Numaguchi
,
Y.
,
Gouldstone
,
A.
,
Ingber
,
D. E.
,
Fredberg
,
J. J.
,
Butler
,
J. P.
, and
Wang
,
N.
,
2003
, “
Intracellular Stress Tomography Reveals Stress Focusing and Structural Anisotropy in Cytoskeleton of Living Cells
,”
Am. J. Physiol. Cell Physiol.
,
285
(
5
), pp.
C1082–C1090
C1082–C1090
.
60.
Pommerenke
,
H.
,
Schreiber
,
E.
,
Durr
,
F.
,
Nebe
,
B.
,
Hahnel
,
C.
,
Moller
,
W.
, and
Rychly
,
J.
,
1996
, “
Stimulation of Integrin Receptors Using a Magnetic Drag Force Device Induces an Intracellular Free Calcium Response
,”
Eur. J. Cell Biol.
,
70
(
2
), pp.
157
164
.
You do not currently have access to this content.