Clinical studies have identified factors such as the stent design and the deployment technique that are one cause for the success or failure of angioplasty treatments. In addition, the success rate may also depend on the stenosis type. Hence, for a particular stenotic artery, the optimal intervention can only be identified by studying the influence of factors such as stent type, strut thickness, geometry of the stent cell, and stent–artery radial mismatch with the wall. We propose a methodology that allows a set of stent parameters to be varied, with the aim of evaluating the difference in the mechanical environment within the wall before and after angioplasty with stenting. Novel scalar quantities attempt to characterize the wall changes in form of the contact pressure caused by the stent struts, and the stresses within the individual components of the wall caused by the stent. These quantities are derived numerically and serve as indicators, which allow the determination of the correct size and type of the stent for each individual stenosis. In addition, the luminal change due to angioplasty may be computed as well. The methodology is demonstrated by using a full three-dimensional geometrical model of a postmortem specimen of a human iliac artery with a stenosis using imaging data. To describe the material behavior of the artery, we considered mechanical data of eight different vascular tissues, which formed the stenosis. The constitutive models for the tissue components capture the typical anisotropic, nonlinear and dissipative characteristics under supra-physiological loading conditions. Three-dimensional stent models were parametrized in such a way as to enable new designs to be generated simply with regard to variations in their geometric structure. For the three-dimensional stent–artery interaction we use a contact algorithm based on smooth contact surfaces of at least C1-continuity, which prevents numerical problems known from standard facet-based contact algorithm. The proposed methodology has the potential to provide a scientific basis for optimizing treatment procedures and stent geometries and materials, to help stent designers examine new stent designs “virtually,” and to assist clinicians in choosing the most suitable stent for a particular stenosis.

1.
Serruys
,
P. W.
et al.
,
1994
, “
A Comparison of Balloon-Expandable-Stent Implantation With Balloon Angioplasty in Patients With Coronary Artery Disease. Benestent Study Group
,”
N. Engl. J. Med.
,
331
, pp.
489
495
.
2.
Fischman
,
D. L.
et al.
,
1994
, “
A Randomized Comparison of Coronary-Stent Placement and Balloon Angioplasty in the Treatment of Coronary Artery Disease. Stent Restenosis Study Investigators
,”
N. Engl. J. Med.
,
331
, pp.
496
501
.
3.
Erbel
,
R.
et al.
,
1998
, “
Coronary-Artery Stenting Compared With Balloon Angioplasty For Restenosis After Initial Balloon Angioplasty. Restenosis Stent Study Group
,”
N. Engl. J. Med.
,
339
, pp.
1672
1678
.
4.
Hoher
,
M.
,
Wohrle
,
J.
,
Grebe
,
O. C.
,
Kochs
,
M.
,
Osterhues
,
H. H.
,
Hombach
,
V.
, and
Buchwald
,
A. B.
,
1999
, “
A Randomized Trial of Elective Stenting After Balloon Recanalization of Chronic Total Occlusions
,”
J. Am. Coll. Cardiol.
,
34
, pp.
722
729
.
5.
Schwartz
,
R. S.
,
Huber
,
K. C.
,
Murphy
,
J. G.
,
Edwards
,
W. D.
,
Camrud
,
A. R.
,
Vliestra
,
R. E.
, and
Holmes
,
D. R.
,
1992
, “
Restenosis and Proportional Neointimal Response to Coronary Artery Injury: Results in a Porcine Model
,”
J. Am. Coll. Cardiol.
,
19
, pp.
267
274
.
6.
Topol
,
E. J.
,
1994
, “
Caveats About Elective Coronary Stenting
,”
N. Engl. J. Med.
,
331
, pp.
539
541
.
7.
Leung
,
D. Y.
,
Glagov
,
S.
, and
Mathews
,
M. B.
,
1976
, “
Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells in vitro
,”
Science
,
191
, pp.
475
477
.
8.
Wang
,
D. L.
,
Wung
,
B. S.
,
Shyy
,
Y. J.
,
Lin
,
C. F.
,
Chao
,
Y. J.
,
Usami
,
S.
, and
Chien
,
S.
,
1995
, “
Mechanical Strain Induces Monocyte Chemotactic Protein—1 Gene Expression in Endothelial Cells. Effects of Mechanical Strain on Monocyte Adhesion to Endothelial Cells
,”
Circ. Res.
,
77
, pp.
294
302
.
9.
Edelman
,
E. R.
, and
Rogers
,
C.
,
1996
, “
Hoop Dreams: Stents Without Restenosis
,”
Circulation
,
94
, pp.
1199
1202
.
10.
Murphy
,
J. G.
,
Schwarts
,
R. S.
,
Edwards
,
W. D.
,
Camrud
,
A. R.
,
Vlietstra
,
R. E.
, and
Holmes
,
D. R. J.
,
1992
, “
Percutaneous Polymeric Stents in Porcine Coronary Arteries
,”
Circulation
,
86
, pp.
1596
1604
.
11.
Rogers
,
C.
, and
Edelman
,
E. R.
,
1995
, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
,
91
, pp.
2995
3001
.
12.
Ko¨nig
,
A.
,
Schiele
,
T. M.
,
Rieber
,
J.
,
Theisen
,
K.
,
Mudra
,
H.
, and
Klauss
,
V.
,
2002
, “
Influence of Stent Design and Deployment Technique on Neointima Formation and Vascular Remodeling
,”
Z. Kardiol.
,
91
, pp.
98
102
.
13.
McLean
,
D. R.
, and
Eiger
,
N. L.
,
2002
, “
Stent Design: Implications for Restenosis
,”
Rev. Cardiovasc. Med.
,
3
, pp.
16
22
.
14.
Sullivan
,
T. M.
,
Ainsworth
,
S. D.
,
Langan
,
E. M.
,
Taylor
,
S.
,
Snyder
,
B.
,
Cull
,
D.
,
Youkey
,
J.
, and
Laberge
,
M.
,
2002
, “
Effect of Endovascular Stent Strut Geometry on Vascular Injury, Myointimal Hyperplasia, and Restenosis
,”
J. Vasc. Res.
,
36
, pp.
143
149
.
15.
Hoffmann
,
R.
,
Mintz
,
G. S.
,
Mehran
,
R.
,
Kent
,
K. M.
,
Pichard
,
A. D.
,
Satler
,
L. F.
, and
Leon
,
M. B.
,
1999
, “
Tissue Proliferation Within and Surrounding Palmaz–Schatz Stents is Dependent on the Aggressiveness of Stent Implanation Technique
,”
Am. J. Cardiol.
,
83
, pp.
1170
1174
.
16.
Wentzel
,
J. J.
et al.
,
2001
, “
Shear-Stress and Wall-Stress Regulation of Vascular Remodeling After Balloon Angioplasty: Effect of Matrix Metalloproteinase Inhibition
,”
Circulation
,
104
, pp.
91
96
.
17.
Thury
,
A.
et al.
,
2002
, “
High Shear Stress After Successful Balloon Angioplasty is Associated With Restenosis and Target Lesion Revascularization
,”
Am. Heart J.
,
144
, pp.
136
143
.
18.
Wentzel
,
J. J.
,
Gijsen
,
F. J. H.
,
Stergiopulos
,
N.
,
Serruys
,
P. W.
,
Slager
,
C. J.
, and
Krams
,
R.
,
2003
, “
Shear Stress, Vascular Remodeling and Neointimal Formation
,”
J. Biomech.
,
36
, pp.
681
688
.
19.
Fattori
,
R.
, and
Piva
,
T.
,
2003
, “
Drug-Eluting Stents in Vascular Intervention
,”
Lancet
,
361
, pp.
247
249
.
20.
Degertekin
,
M.
et al.
,
2003
, “
Sirolimus-Eluting Stent For Treatment of Complex In-Stent Restenosis: The First Clinical Experience
,”
J. Am. Coll. Cardiol.
,
41
, pp.
184
189
.
21.
Popma
,
J. J.
et al.
,
2002
, “
Randomized Trial of 90SR/90Y Beta-Radiation Versus Placebo Control For Treatment of In-Stent Restenosis (START)
,”
Circulation
,
106
, pp.
1090
1096
.
22.
Waksman
,
R.
,
Raizner
,
A. E.
,
Yeung
,
A. C.
,
Lansky
,
A. J.
, and
Vandertie
,
L.
,
2002
, “
Use of Localized Intracoronary Beta Radiation in Treatment of In-Stent Restenosis: The INHIBIT Randomised Controlled Trial
,”
Lancet
,
359
, pp.
543
544
.
23.
Castaneda-Zuniga, W. R., 1985, Pathophysiology of Transluminal Angioplasty. in Improvement of Myocardial Perfusion, J. Meyer, R. Erberl, and H. J. Rupprecht, eds., Martinus Nijhoff Publisher, Boston, pp. 138–141.
24.
Hoffmann
,
R.
et al.
,
1996
, “
Patterns and Mechanisms of In-Stent Restenosis, A Serial Intravascular Ultrasound Study
,”
Circulation
,
94
, pp.
1247
1254
.
25.
Kastrati
,
A.
et al.
,
2001
, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial
,”
Circulation
,
103
, pp.
2816
2821
.
26.
Kastrati
,
A.
et al.
,
2001
, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
,
87
, pp.
34
39
.
27.
Pache
,
J.
et al.
,
2003
, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO-2) Trial
,”
J. Am. Coll. Cardiol.
,
41
, pp.
1283
1288
.
28.
Schwartz
,
R. S.
, and
Henry
,
T. D.
,
2002
, “
Pathophysiology of Coronary Artery Restenosis
,”
Rev. Cardiovasc. Med.
,
3
, pp.
S4–S9
S4–S9
.
29.
Holzapfel, G. A., Schulze-Bauer, C. A. J., and Stadler, M., 2000, “Mechanics of Angioplasty: Wall, Balloon and Stent,” in Mechanics in Biology, J. Casey and G. Bao, eds., New York, The American Society of Mechanical Engineers (ASME), AMD-Vol. 242/BED-Vol. 46, pp. 141–156.
30.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
,
2002
, “
A Layer-Specific Three-Dimensional Model For the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
, pp.
753
767
.
31.
Stadler
,
M.
, and
Holzapfel
,
G. A.
,
2004
, “
Subdivision Schemes For Smooth Contact Surfaces of Arbitrary Mesh Topology in 3D
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
1161
1195
.
32.
Stolpmann
,
J.
,
Brauer
,
H.
,
Stracke
,
H.-J.
,
Erbel
,
R.
, and
Fischer
,
A.
,
2003
, “
Practicability and Limitations of Finite Element Simulation of the Dilation Behavior of Coronary Stents
,”
Materialwiss. Werkstofftech.
,
34
, pp.
736
745
.
33.
Auricchio
,
F.
,
Di Loreto
,
M.
, and
Sacco
,
E.
,
2001
, “
Finite-Element Analysis of a Stenotic Revascularization Through a Stent Insertion
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
, pp.
249
264
.
34.
Migliavacca
,
F.
,
Petrini
,
L.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Stainless and Shape Memory Alloy Coronary Stents: A Computational Study on the Interaction With the Vascular Wall
,”
Biomech. Model. Mechanobio.
,
2
, pp.
205
217
.
35.
Rogers
,
C.
,
Tseng
,
D. Y.
,
Squire
,
J. C.
, and
Edelman
,
E. R.
,
1999
, “
Balloon-Artery Interactions During Stent Placement: A Finite Element Analysis Approach to Pressure, Compliance and Stent Design as Contributors to Vascular Injury
,”
Circ. Res.
,
84
, pp.
378
383
.
36.
Jiang
,
Y.
,
Kohara
,
K.
, and
Hiwada
,
K.
,
2000
, “
Association Between Risk Factors for Atherosclerosis and Mechanical Forces in Carotid Artery
,”
Stroke
,
31
, pp.
2319
2324
.
37.
Prendergast
,
P. J.
,
Lally
,
C.
,
Daly
,
S.
,
Reid
,
A. J.
,
Lee
,
T. C.
,
Quinn
,
D.
, and
Dolan
,
F.
,
2003
, “
Analysis of Prolapse in Cardiovascular Stents: a Constitutive Model for Vascular Tissue and Finite Element Analysis
,”
J. Biomech. Eng.
,
125
, pp.
692
699
.
38.
Jang
,
I.-K.
,
Tearney
,
G.
, and
Bouma
,
B.
,
2001
, “
Visualization of Tissue Prolapse Between Coronary Stent Struts by Optical Coherence Tomography
,”
Circulation
,
104
, p.
2754
2754
.
39.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
,
2004
, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
J. Biomech. Eng.
,
126
, pp.
657
665
.
40.
Stary, H. C., 2003, Atlas of Atherosclerosis: Progression and Regression, The Parthenon Publishing Group Limited, Boca Raton, London, New York, Washington, DC, 2nd ed..
41.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2001
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
42.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
, Jr.,
J. E.
, and
Meister
,
J.-J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
, pp.
777
786
.
43.
Holzapfel, G. A., Sommer, G., and Gasser, T. C., “Constitutive Equations For the Anisotropic Mechanical Response of Tissue Components in Human Atherosclerotic Plaques,” submitted.
44.
Schulze-Bauer
,
C. A. J.
,
Mo¨rth
,
C.
, and
Holzapfel
,
G. A.
,
2003
, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
J. Biomech. Eng.
,
125
, pp.
395
406
.
45.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2002
, “
A Rate-Independent Elastoplastic Constitutive Model For (Biological) Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation
,”
Comput. Mech.
,
29
, pp.
340
360
.
46.
Holzapfel, G. A., 2003, Structural and Numerical Models For the (Visco)elastic Response of Arterial Walls With Residual Stresses, in Biomechanics of Soft Tissue in Cardiovascular Systems, G. A. Holzapfel and R. W. Ogden, eds., Springer-Verlag. CISM Courses and Lectures No. 441, International Center for Mechanical Sciences, Wein, 2003, pp. 109–184.
47.
Simo, J. C., and Hughes, T. J. R., 1998, Computational Inelasticity, Springer-Verlag, New York.
48.
Evans, D., editor, 1994, Preconditioned Iterative Methods (Topics in Computer Mathematics), Taylor and Francis, London, Vol. 4.
49.
Dumoulin
,
C.
, and
Cochelin
,
B.
,
2000
, “
Mechanical Behavior Modelling of Balloon-Expandable Stents
,”
J. Biomech.
,
33
, pp.
1461
1470
.
50.
Berry
,
J. L.
,
Manoach
,
E.
,
Mekkaoui
,
C.
,
Rolland
,
P. H.
,
Moore
,
J. E.
, and
Rachev
,
A.
,
2002
, “
Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis
,”
J. Vasc. Interv Radiol.
,
13
, pp.
97
105
.
51.
Losordo
,
D. W.
,
Rosenfield
,
K.
,
Pieczek
,
A.
,
Baker
,
K.
,
Harding
,
M.
, and
Isner
,
J. M.
,
1992
, “
How Does Angioplasty Work? Serial Analysis of Human Iliac Arteries Using Intravascular Ultrasound
,”
Circulation
,
86
, pp.
1845
1858
.
52.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2003
, “
Geometrically Non-Linear and Consistently Linearized Embedded Strong Discontinuity Models For 3D Problems With An Application to the Dissection Analysis of Soft Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
5059
5098
.
You do not currently have access to this content.