The main purpose of this work is to discuss the ability of finite element analyses, together with an appropriate anisotropic fracture criterion, to predict the ultimate load and type of fracture in bones and more specifically in the proximal femur. We show here that the use of a three-dimensional anisotropic criterion provides better results than other well-known isotropic criteria. The criterion parameters and the anisotropic elastic properties were defined in terms of the bone tissue microstructure, quantified by the apparent density and the so-called “fabric tensor”, whose spatial distributions were obtained by means of an anisotropic remodeling model able to capture the main features of the internal structure of long bones. In order to check the validity of the results obtained, they have been compared with those of an experimental work that analyzes different types of fractures induced in the proximal femur by a static overload.

1.
Evans
,
P. L.
, and
McGrory
,
B. J.
,
2002
, “
Fractures of Proximal Femur
,”
Hospital Physician
,
38
(
4
), pp.
30
38
.
2.
Melton
, III,
L. J.
,
1993
, “
Hip Fractures: A Worldwide Problem Today and Tomorrow
,”
Bone (N.Y.)
,
14
(
suppl
), pp.
S1–S8
S1–S8
.
3.
Zuckerman
,
J. D.
,
1996
, “
Current Concepts: Hip Fracture
,”
N. Engl. J. Med.
,
334
, pp.
1519
1525
.
4.
Perez
,
J. V.
,
Warwick
,
D. J.
,
Case
,
C. P.
, and
Bannister
,
G. C.
,
1995
, “
Death After Proximal Femoral Fracture-an Autopsy Study
,”
Injury
,
26
, No.
4
, pp.
237
40
.
5.
Marks
,
R.
,
Allegrante
,
J. P.
,
MacKenzie
,
C. R.
, and
Lane
,
J. M.
,
2003
, “
Hip Fractures Among the Elderly: Cause, Consequences and Control
,”
Ageing Research Reviews
,
2
, pp.
57
91
.
6.
Ray
,
N. F.
,
Chan
,
J. K.
,
Thamer
,
M.
, and
Melton
,
L. J.
,
1997
, “
Medical Expenditures for Treatment of Osteoporosis Fractures in the United States in 1995: Report From the National Osteoporosis Foundation
,”
J. Bone Miner. Res.
,
12
, pp.
24
25
.
7.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture Prediction for the Proximal Femur Using Finite Element Models: Part I-Linear Analysis
,”
J. Biomech. Eng.
,
113
, pp.
353
360
.
8.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture Prediction for the Proximal Femur Using Finite Element Models: Part II-Nonlinear Analysis
,”
J. Biomech. Eng.
,
113
, pp.
361
365
.
9.
Keyak
,
J. H.
,
Rossi
,
S. A.
,
Jones
,
K. A.
, and
Skinner
,
H. B.
,
2000
, “
Prediction of Femoral Fracture Load Using Automated Finite Element Modeling
,”
J. Biomech.
,
31
, No.
2
, pp.
125
133
.
10.
Keyak
,
J. H.
, and
Rossi
,
S. A.
,
2000
, “
Prediction of Femoral Fracture Load Using Finite Element Models: An Examination of Stress- and Strain-based Failure Theories
,”
J. Biomech.
,
33
, No.
2
, pp.
209
214
.
11.
Keyak
,
J. H.
,
2000
, “
Relationship Between Femoral Fracture Loads for Two Load Configuration
,”
J. Biomech.
,
33
, pp.
499
502
.
12.
Keyak
,
J. H.
,
Rossi
,
S. A.
,
Jones
,
K. A.
,
Les
,
C. M.
, and
Skinner
,
H. B.
,
2001
, “
Prediction of Fracture Location in the Proximal Femur Using Finite Element Models
,”
J. Med. Eng. Phys.
,
23
, pp.
657
664
.
13.
Ota
,
T.
,
Yamamoto
,
I.
, and
Morita
,
R.
,
1999
, “
Fracture Simulation of Femoral Bone Using Finite-element Method: How a Fracture Initiates and Proceeds
,”
Bone and Mineral Metabolism
,
17
, pp.
108
112
.
14.
Ford
,
C. M.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1996
, “
The effect of Impact Direction on the Structural Capacity of the Proximal Femur During Falls
,”
J. Bone Miner. Res.
,
11
, No.
3
, pp.
377
383
.
15.
Pietruszczak
,
S.
,
Inglis
,
D.
, and
Pande
,
G. N.
,
1999
, “
A Fabric-dependent Fracture Criterion for Bone
,”
J. Biomech.
,
32
, pp.
1071
1079
.
16.
Fyhrie
,
D. P.
, and
Vashishth
,
D.
,
2000
, “
Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension
,”
Bone (N.Y.)
,
26
, No.
2
, pp.
169
173
.
17.
Fenech
,
C. M.
, and
Keaveny
,
T. M.
,
1999
, “
A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Bovine Trabecular Bone
,”
J. Biomech. Eng.
,
121
, pp.
414
422
.
18.
Niebur, G. L., 2000, “A Computational Investigation of Multiaxial Failure in Trabecular Bone,” Ph.D thesis, http://biomech1.me.berkeley.edu/∼gln/Dissertation/
19.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Zadesky
,
S. P.
, and
Arramon
,
Y. P.
,
1999
, “
Application of the Tsai-Wu Quadratic Multiaxial Criterion to Bovine Trabecular Bone
,”
J. Biomech. Eng.
,
121
, pp.
91
107
.
20.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
, pp.
58
80
.
21.
Cowin
,
S. C.
,
1986
, “
Fabric Dependence of an Anisotropic Strength Criterion
,”
Mech. Mater.
,
5
, pp.
251
260
.
22.
Cowin
,
S. C.
,
1986
, “
Wolff’s Law of Trabecular Architecture at Remodelling Equilibrium
,”
J. Biomech. Eng.
,
108
, pp.
83
88
.
23.
Cezayirlioglu
,
H.
,
Bahniuk
,
E.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
,
1985
, “
Anisotropic Yield Behavior of Bone Under Combined Axial Force and Torque
,”
J. Biomech.
,
18
, pp.
61
69
.
24.
Hayes, W. C., and Wright, T. M., 1977, “An Empirical Strength Theory for Compact Bone Fracture,” Proc. 4th International Conference on Fracture, Volume III, pp. 1173–1180.
25.
Doblare´
,
M.
, and
Garcı´a
,
J. M.
,
2002
, “
Anisotropic Bone Remodelling Model Based on a Continuum Damage-Repair Theory
,”
J. Biomech.
,
35
, No.
1
, pp.
1
17
.
26.
Yang
,
K. H.
,
Shen
,
K. L.
,
Demetropoulos
,
C. K.
, and
King
,
A. I.
,
1996
, “
The Relationship Between Loading Conditions and Fracture Patterns of the Proximal Femur
,”
J. Biomech. Eng.
,
118
, pp.
575
578
.
27.
I-DEAS, Master Series Release 8.0, Structural Dynamics Research Corporation, 2001, EDS.
28.
Doblare´
,
M.
, and
Garcı´a
,
J. M.
,
2001
, “
Application of an Anisotropic Bone-remodelling Model Based on a Damage-repair Theory to the Analysis of the Proximal Femur Before and After Hip Replacement
,”
J. Biomech.
,
34
, pp.
1157
1170
.
29.
Garcia
,
J. M.
,
Martinez
,
M. A.
, and
Doblare´
,
M.
,
2001
, “
An Anisotropic Internal-external Bone Adaptation Model Based on a Combination of CAO and Continuum Damage Mechanics Technologies
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
4
, No.
4
, pp.
355
378
.
30.
Cowin
,
S. C.
,
1985
, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
, pp.
137
147
.
31.
Lekhnitskii, S. G., 1981, Theory of Elasticity of an Anisotropic Body, Mir, Moscow.
32.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
,
1984
, “
A Continuous Ware Technique for the Measurement of the Elastic Properties of Bone
,”
J. Biomech.
,
17
, pp.
349
361
.
33.
Reilly
,
T. D.
, and
Burstein
,
A. H.
,
1974
, “
The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg.
,
56
, pp.
1001
1022
.
34.
Reilly
,
T. D.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
, No.
6
, pp.
393
405
.
35.
Carter
,
D. R.
,
Fyhrie
,
D. P.
, and
Whalen
,
T.
,
1987
, “
Trabecular Bone Density and Loading History: Regulation of Tissue Biology by Mechanical Energy
,”
J. Biomech.
,
20
, pp.
785
795
.
36.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
, pp.
1159
1168
.
37.
Keyak
,
J. H.
,
Lee
,
I. Y.
, and
Skinner
,
H. B.
,
1994
, “
Correlations Between Orthogonal Mechanical Properties and Density of Trabecular Bone: Use of Different Densitometric Measures
,”
J. Biomed. Mater. Res.
,
28
, pp.
389
397
.
38.
Keyak
,
J. H.
,
Rossi
,
A. R.
,
Jones
,
K. A.
, and
Skinner
,
H. B.
,
1998
, “
Prediction of Femoral Fracture Load Using Automated Finite Element Modeling
,”
J. Biomech.
,
31
, pp.
125
133
.
39.
Hernandez
,
C. J.
,
Beaupre´
,
G. S.
,
Se´ller
,
T. S.
, and
Carter
,
D. R.
,
2001
, “
The Influence of Bone Volume Fraction and Ash Fraction on Bone Strength and Modulus
,”
Bone (N.Y.)
,
29
, No.
1
, pp.
74
78
.
40.
Martin, R. B., Burr, D. B., and Sharkey, N., 1998, Skeletal Tissue Mechanics, Springer-Verlag, New York, p. 137.
41.
Mu¨ller, M. E., Allgo¨wer, M., Schneider, R., and Willenegger, H., 1993, Manual de osteosı´ntesis, CDRom, Springer-Verlag Ibe´rica, Barcelona.
42.
Taylor
,
D.
, and
Lee
,
T. C.
,
1998
, “
Measuring the Shape and Size of Microcracks in Bone
,”
J. Biomech.
,
31
, No.
12
, pp.
1177
1180
.
43.
Akkus
,
O.
, and
Rimnac
,
C. M.
,
2001
, “
Cortical Bone Tissue Resists Fatigue Fracture by Deceleration and Arrest of Microcrack Growth
,”
J. Biomech.
,
34
, No.
6
, pp.
757
764
.
44.
Taylor
,
D.
,
1998
, “
Microcrack Growth Parameters for Compact Bone Deduced From Stiffness Variations
,”
J. Biomech.
,
31
, No.
7
, pp.
587
592
.
45.
Taylor
,
D.
, and
Kuiper
,
J. H.
,
2001
, “
The Prediction of Stress Fractures Using a ‘Stressed Volume’ Concept
,”
J. Orthop. Res.
,
19
, No.
5
, pp.
919
926
.
46.
Prendergast.
,
P. J.
, and
Taylor
,
D.
,
1994
, “
Prediction of Bone Adaptation Using Damage Accumulation
,”
J. Biomech.
,
27
, No.
8
, pp.
1067
1076
.
47.
Ramtani
,
S.
, and
Zidi
,
M.
,
2001
, “
A Theoretical Model of the Effect of Continuum Damage on a Bone Adaptation Model
,”
J. Biomech.
,
34
, No.
4
, pp.
471
479
.
48.
Martin, R. B., Burr, D. B., and Sharkey, N., 1998, Skeletal Tissue Mechanics, Springer-Verlag, New York, pp. 209–212.
49.
Hazelwood
,
S. J.
,
Martin
,
R. B.
,
Rashid
,
M. M.
, and
Rodrigo
,
J. J.
,
2001
, “
A Mechanistic Model for Internal Bone Remodeling Exhibits Different Dynamic Responses in Disuse and Overload
,”
J. Biomech.
,
34
, No.
3
, pp.
299
308
.
50.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
,
Ambrosius
,
W.
,
Hasan
,
M. S.
, and
Pidaparti
,
R.
,
1998
, “
Does Microdamage Accumulation Affect the Mechanical Properties of Bone?
,”
J. Biomech.
,
31
, pp.
337
345
.
51.
Yeh
,
O. C.
, and
Keaveny
,
T. M.
,
2001
Relative Roles of Microdamage and Microfracture in the Mechanical Behavior of Trabecular Bone
,”
J. Orthop. Res.
,
19
, pp.
1001
1007
.
52.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Ford
,
C. M.
, and
Hayes
,
W. C.
,
1994
, “
Differences Between the Tensile and Compressive Strengths of Bovine Tibial Trabecular Bone Depend on Modulus
,”
J. Biomech.
,
27
, pp.
1137
1146
.
53.
Fiechtner
,
J. J
,
2003
, “
Hip Fracture Prevention. Drug Therapies and Lifestyle Modifications that can Reduce Risk
,”
Postgrad Med.
,
114
, No.
3
, pp.
22
28
.
You do not currently have access to this content.