In this study, the thermal stress distribution in cryosurgery of kidney was investigated using a multiphysics finite element model developed in ANSYS (V8.1). The thermal portion of the model was verified using experimental data and the mechanics portion of the model (elastic) was verified using classic analytical solutions. Temperature dependent thermal and mechanical properties were used in the model. Moreover, the model accounts for thermal expansion due to both thermal expansion in single phase and volumetric expansion associated with phase change of tissue water to ice. For a clinical cylindrical cryoprobe inserted into the renal cortex from the top–middle renal capsule, it was found that the thermal stress distributions along the radial position are very different at different depths from the top renal capsule. The thermal stress is much higher at both ends than in the middle of the cryoprobe surface. It was found that there might be more tissue next to the top renal capsule than other region undergoing microcrack formation or plastic deformation. Furthermore, it was found that macrocrack formation is more likely to occur in tissue adjacent to the cryoprobe surface (especially on the sharp point tip) and during the thawing phase of cryosurgery. It was further found that the volumetric expansion associated with phase change induced much higher thermal stress than thermal expansion in a single phase and might therefore be the main cause of the frequently observed crack formation shortly after initiation of thawing in cryosurgery. Because the thermal stress adjacent to the cryoprobe is much higher than the yield stress of frozen renal tissue, a plastic stress model is required for better modeling of the thermal stress distribution in cryosurgery of kidney in future. However the computational effort will then be drastically increased due to the strong nonlinear nature of the plastic model and more experimental studies are indispensable for better understanding of the mechanical behavior of frozen tissue in cryosurgery.

1.
Rupp
,
C. C.
,
Hoffmann
,
N. E.
,
Schmidlin
,
F. R.
,
Swanlund
,
D. J.
,
Bischof
,
J. C.
, and
Coad
,
J. E.
, 2002, “
Cryosurgerical Changes in the Porcine Kidney: Histologic Analysis with Thermal History Correlation
,”
Cryobiology
0011-2240,
45
, pp.
167
182
.
2.
Chosy
,
S. G.
,
Nakada
,
S. Y.
,
Lee
,
F. T.
, Jr.
, and
Warner
,
T. F.
, 1998, “
Monitoring Renal Cryosurgery: Predictors of Tissue Necrosis in Swine
,”
J. Urol. (Baltimore)
0022-5347,
159
, pp.
1370
1374
.
3.
Nakada
,
S. Y.
,
Lee
,
F. T.
, Jr.
,
Warner
,
T.
,
Chosy
,
S. G.
, and
Moon
,
T. D.
, 1998, “
Laparoscopic Cryosurgery of the Kidney in the Porcine Model: An Acute Histological Study
,”
Urology
0090-4295,
51
, pp.
161
166
.
4.
Nakada
,
S. Y.
,
Lee
,
F. T.
Jr.
,
Warner
,
T.
,
Chosy
,
S. G.
, and
Moon
,
T. D.
, 1998, “
Laparoscopic Renal Cryotherapy in Swine: Comparison of Puncture Cryotherapy Proceeded by Arterial Embolization and Contact Cryotherapy
,”
J. Endourol
0892-7790,
12
(
6
), pp.
567
573
.
5.
Campbell
,
S. C.
,
Krishnamurthi
,
V.
,
Chow
,
G.
, et al.
, 1998, “
Renal Cryosurgery: Experimental Evaluation of Treatment Parameters
,”
Urology
0090-4295,
51
, (suppl 5A),
161
166
.
6.
Stephenson
,
R. A.
,
King
,
D. K.
, and
Rohr
,
L. R.
, 1996, “
Renal Cryoablation in a Canine Model
,”
Urology
0090-4295,
47
, pp.
772
776
.
7.
Onik
,
G. M.
,
Reyes
,
G.
,
Cohen
,
J. K.
, and
Porterfield
,
B.
, 1993, “
Ultrasound Characteristic of Renal Cryosurgery
,”
Urology
0090-4295,
42
, pp.
212
215
.
8.
Pantuck
,
A. J.
,
Zisman
,
A.
,
Cohen
,
J.
, and
Belldegrun
,
A.
, 2002, “
Cryosurgical Ablation of Renal Tumors Using 1.5-millimeter, Ultrathin Cryoprobes
,”
Urology
0090-4295,
59
, pp.
130
133
.
9.
Delworth
,
M. G.
,
Pisters
,
L. L.
,
Fornage
,
B. D.
, and
Von
,
E.
, 1996, “
Cryotherapy for Renal Cell Carcinoma and Angiomyolipoma
,”
J. Urol. (Baltimore)
0022-5347,
155
, pp.
252
254
.
10.
Rukstalis
,
D. B.
,
Khorsadi
,
M.
,
Garcia
,
F. U.
,
Hoeing
,
D. M.
, and
Cohen
,
J. K.
, 2001, “
Clinical Experience with Open Renal Cryoablation
,”
Urology
0090-4295,
57
, pp.
34
39
.
11.
Rodriguez
,
R.
,
Chan
,
D.
,
Bischoff
,
J.
,
Chen
,
R.
,
Kavoussi
,
M.
,
Choti
,
M.
, and
Marshall
,
F.
, 2000, “
Renal Ablative Cryosurgery in Selected Patients with Peripheral Renal Masses
,”
Urology
0090-4295,
55
(
1
), pp.
25
30
.
12.
Gill
,
I. S.
,
Novick
,
A. C.
,
Soble
,
J.
,
Sung
,
G.
,
Remer
,
E.
,
Hale
,
J.
, and
O’Malley
, 1998, “
Laparoscopic Renal Cryoabaltion: Initial Clinical Series
,”
Urology
0090-4295,
52
, pp.
543
551
.
13.
Gill
,
I. S.
and
Novick
,
A. C.
, 1999, “
Renal Cryosurgery
,”
Urology
0090-4295,
54
, pp.
215
219
.
14.
Gill
,
I. S.
,
Novick
,
A. C.
, and
Meraney
,
A. M.
et al.
, 2000, “
Laparoscopic Renal Cryoablation in 32 Patients
,”
Urology
0090-4295,
56
, pp.
748
753
.
15.
Shingleton
,
W. B.
and
Sewell
,
P. E.
, 2001, “
Percutaneous Renal Tumor Cryoablation with Magnetic Resonance Imaging Guidance
,”
J. Urol. (Baltimore)
0022-5347,
165
, pp.
773
776
.
16.
Najimi
,
S.
and
Rubinsky
,
B.
, 1997, “
Noninvasive Detection of Thermal Stress Fractures in Frozen Biological Materials
,”
Cryo-letters
,
18
(
4
), pp.
209
216
.
17.
Rubinsky
,
B.
, 1982, “
Thermal Stress During Solidification Processes
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
196
199
.
18.
Boley
,
B. A.
and
Weiner
,
J. H.
, 1960,
Theory of Thermal Stress
,
Wiley
, New York.
19.
Rabin
,
Y.
and
Steif
,
P. S.
, 1996, “
Analysis of Thermal Stresses Around a Cryosurgical Probe
,”
Cryobiology
0011-2240,
33
, pp.
276
290
.
20.
Rabin
,
Y.
,
Steif
,
P. S.
, 2000, “
Thermal Stress Modeling in Cryosurgery
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2363
2375
.
21.
Rubinsky
,
B.
,
Cravalho
,
E. G.
, and
Mikic
,
B.
, 1980, “
Thermal Stress in Frozen Organs
,”
Cryobiology
0011-2240,
17
, pp.
66
73
.
22.
Rabin
,
Y.
and
Steif
,
P. S.
, 1998, “
Thermal Stresses in a Freezing Sphere and its Application to Cryobiology
,”
J. Appl. Mech.
0021-8936,
65
(
6
), pp.
1
6
.
23.
Lin
,
S.
,
Gao
,
D. Y.
, and
Yu
,
X. C.
, 1990, “
Thermal Stress Induced by Water Solidification in a Cylindrical Tube
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
1079
1082
.
24.
Shi
,
X.
,
Datta
,
A. K.
, and
Mukherjee
,
Y.
, 1998, “
Thermal Stresses from Large Volumetric Expansion During Freezing of Biomaterials
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
720
726
.
25.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
26.
He
,
X.
and
Bischof
,
J. C.
, 2003, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
0278-940X,
31
(
5
), pp.
355
421
.
27.
Hoffman
,
N. E.
and
Bischof
,
J. C.
, 2001, “
Cryosurgery of Normal and Tumor Tissue in the Dorsal Skin Flap Chamber: Part I-Thermal Response
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
301
309
.
28.
He
,
X.
,
McGee
,
S.
,
Coad
,
J. E.
,
Schmidlin
,
F.
,
Iaizzo
,
P. A.
,
Swanlund
,
D. J.
,
Rudie
,
E.
,
Kluge
,
S.
, and
Bischof
,
J. C.
, 2004, “
Investigation of the Thermal and Tissue Injury Behavior in Microwave Thermal Therapy Using a Porcine Kidney Model
,”
Int. J. Hyperthermia
0265-6736,
20
(
6
), pp.
567
593
.
29.
Diller
,
K. R.
,
Valvano
,
J. W.
, and
Pearce
,
J. A.
, 2000, “
Bioheat Transfer
,” in
Kreith
,
F.
, ed.,
CRC Thermal Engineering Handbook
,
CRC Press
, Boca Raton, FL, p.
4
–114-
87
.
30.
Smith
,
D. J.
,
Devireddy
,
R. V.
, and
Bischof
,
J. C.
, 1999, “
Prediction of Thermal History and Interface Propagation During Freezing in Biological Systems-Latent Heat and Temperature-Dependent Property Effects
,” in
Proceedings of the 5th, ASME/JSME Joint Thermal Engineering Conference
, San Diego, California, March 15–19, CD-ROM Paper No. 6250.
31.
Han
,
B.
and
Bischof
,
J. C.
, 2002, “
Effect Of Thermal Properties on Heat Transfer in Cryopreservation and Cryosurgery
,” ASME IMECE, CD Paper No. 2-17-1-2.
32.
Rabin
,
Y.
,
Steif
,
P. S.
,
Taylor
,
M. J.
,
Julian
,
T. B.
, and
Wolmark
,
N.
, 1996, “
An Experimental Study of the Mechanical Response of Frozen Biological Tissues at Cryogenic Temperatures
,”
Cryobiology
0011-2240,
33
pp.
472
482
.
33.
Dennis
,
B. H.
,
Dulikravich
,
G. S.
, and
Rabin
,
Y.
, 2000, “
Optimization of Organ Freezing Protocols with Specified Allowable Thermal Stress Levels
,”
Scott
,
E. P.
and
Bischof
,
J. C.
, eds., in
Proceedings of the Symposium on Advances in Heat and Mass Transfer in Biotechnology
, ASME IMECE 2K, Orlando, FL 2000; HTD 368/BED47: pp.
33
48
.
34.
Rabin
,
Y.
,
Taylor
,
M. J.
, and
Wolmark
,
N.
, 1998, “
Thermal Expansion Measurements of Frozen Biological Tissues at Cryogenic Temperatures
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
259
266
.
35.
Timoshenko
,
S. P.
, 1965,
Strength of Materials: Part, II. Advanced Theory and Problems
3rd ed. van Nostrand, Reinhurt.
You do not currently have access to this content.