In this study, the digitized geometrical data of the embalmed skull and vertebrae (C0–C7) of a 68-year old male cadaver were processed to develop a comprehensive, geometrically accurate, nonlinear C0–C7 FE model. The biomechanical response of human neck under physiological static loadings, near vertex drop impact and rear-end impact (whiplash) conditions were investigated and compared with published experimental results. Under static loading conditions, the predicted moment-rotation relationships of each motion segment under moments in midsagittal plane and horizontal plane agreed well with experimental data. In addition, the respective predicted head impact force history and the S-shaped kinematics responses of head-neck complex under near-vertex drop impact and rear-end conditions were close to those observed in reported experiments. Although the predicted responses of the head-neck complex under any specific condition cannot perfectly match the experimental observations, the model reasonably reflected the rotation distributions among the motion segments under static moments and basic responses of head and neck under dynamic loadings. The current model may offer potentials to effectively reflect the behavior of human cervical spine suitable for further biomechanics and traumatic studies.

1.
Panjabi
,
M. M.
, 1998, “
Cervical Spine Models for Biomechanical Research
,”
Spine
0362-2436,
15
,23(
24
), pp.
2684
2700
.
2.
Goel
,
V. K.
, and
Clausen
,
J. D.
, 1998, “
Prediction of Load Sharing Among Spinal Components of a C5–C6 Motion Segment Using the Finite Element Approach
,”
Spine
0362-2436,
15
,23(
6
), pp.
684
691
.
3.
Teo
,
E. C.
, and
Ng
,
H. W.
, 2001, “
First Cervical Vertebra (Atlas) Fracture Mechanism Studies Using Finite Element Method
,”
J. Biomech.
0021-9290,
34
(
1
), pp.
13
21
.
4.
Puttlitz
,
C. M.
,
Goel
,
V. K.
,
Clark
,
C. R.
,
Traynelis
,
V. C.
,
Scifert
,
J. L.
, and
Grosland
,
N. M.
, 2000, “
Biomechanical Rationale for the Pathology of Rheumatoid Arthritis in the Craniovertebral Junction
,”
Spine
0362-2436,
1
,25(
13
), pp.
1607
1616
.
5.
Deng
,
Y. C.
, and
Goldsmith
,
W.
, 1987, “
Response of a Human Head/Neck/Upper-Torso Replica to Dynamic Loading-II: Analytical/Numerical Model
,”
J. Biomech.
0021-9290,
20
(
5
), pp.
487
97
.
6.
Stemper
,
B. D.
,
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 2000, “
Head-Neck Finite Element Model for Motor Vehicle Inertial Impact: Material Sensitivity Analysis
,”
Biomed. Sci. Instrum.
0067-8856,
36
, pp.
331
335
.
7.
Camacho
,
D. L.
,
Nightingale
,
R. W.
, and
Myers
,
B. S.
, 1999, “
Surface Friction in Near-Vertex Head and Neck Impact Increases Risk of Injury
,”
J. Biomech.
0021-9290,
32
(
3
), pp.
293
301
.
8.
Yang
,
K. H.
,
Zhu
,
F.
,
Luan
,
F.
,
Zhao
,
L.
, and
Begeman
,
P. C.
, 1998, “
Development of a Finite Element Model of the Human Neck
,”
42nd Stapp Car Crash Conference
, Tempe, Arizona.
9.
Ng
,
H. W.
, and
Teo
,
E. C.
, 2001, “
Nonlinear Finite-Element Analysis of the Lower Cervical Spine (C4–C6) Under Axial Loading
,”
J. Spinal Disord.
0895-0385,
14
(
3
), pp.
201
210
.
10.
Gilad
,
I.
, and
Nissan
,
M.
, 1986, “
A Study of Vertebra and Disk Geometric Relations of the Human Cervical and Lumbar Spine
,”
Spine
0362-2436,
11
, pp.
154
157
.
11.
Shirazi-ADL
,
S. A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
, 1984, “
Stress Analysis of the Lumbar Disk-Body Unit Compression: A Three-Dimensional Nonlinear Finite Element Study
,”
Spine
0362-2436,
9
(
Pt2
), pp.
120
134
.
12.
Linder
,
A.
, 2000, “
A New Mathematical Neck Model for a Low-Velocity Rear-End Impact Dummy: Evaluation of Components Influencing Head Kinematics
,”
Accid. Anal Prev.
0001-4575,
32
(
2
), pp.
261
269
.
13.
The cervical spine research society
, editorial committee, 1998,
The Cervical Spine
,
Lippincott-Raven
, Philadelphia.
14.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
, 2000, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
623
629
.
15.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997, “
Cellular Solids: Structures & Properties
,”
Pergamon
, Oxford.
16.
Silva
,
M. J.
, and
Gibson
,
L. J.
, 1997, “
Modeling the Mechanical Behavior of Vertebral Trabecular Bone: Effects of Age-Related Changes in Microstructure
,”
Bone (N.Y.)
8756-3282,
21
(
2
), pp.
191
199
.
17.
Puttlitz
,
C. M.
,
Goel
,
V. K.
,
Clark
,
C. R.
,
Traynelis
,
V. C.
,
Scifert
,
J. L.
, and
Grosland
,
N. M.
, 2000, “
Biomechanical Rationale for the Pathology of Rheumatoid Arthritis in the Craniovertebral Junction
,”
Spine
0362-2436,
1
, 25(
13
), pp.
1607
1616
.
18.
Lee
,
C. K.
,
Kim
,
Y. E.
,
Lee
,
C. S.
,
Hong
,
Y. M.
,
Jung
,
J. M.
, and
Goel
,
V. K.
, 2000, “
Impact Response of the Intervertebral Disk in a Finite-Element Model
,”
Spine
0362-2436,
1
, 25(
19
), pp.
2431
2439
.
19.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
, 2001, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
0362-2436,
15
, 26(
24
), pp.
2692
2700
.
20.
Panjabi
,
M. M.
,
Nibu
,
K.
, and
Cholewicki
,
J.
, 1998, “
Whiplash Injuries and the Potential for Mechanical Instability
,”
Eur. Spine J.
0940-6719,
7
(
6
), pp.
484
492
.
21.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 2004, “
Validation of a Head-Neck Computer Model for Whiplash Simulation
,”
Med. Biol. Eng. Comput.
0140-0118,
42
(
3
), pp.
333
338
.
22.
Stemper
,
B. D.
, 2004, “
Whiplash Affects Cervical Spine Biomechanics
,” Ph.D. thesis, Marquette University.
23.
Goel
,
V. K.
,
Clark
,
C. R.
,
Gallaes
,
K.
, and
Liu
,
Y. K.
, 1988, “
Moment-Rotation Relationships of the Ligamentous Occipito-Atlanto-Axial Complex
,”
J. Biomech.
0021-9290,
21
(
8
), pp.
673
680
.
24.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
, 2002, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
0021-9290,
35
(
6
), pp.
725
732
.
25.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Grauer
,
J. N.
,
Babat
,
L. B.
, and
Dvorak
,
J.
, 1998, “
Mechanism of Whiplash Injury
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
13
(
4–5
), pp.
239
249
.
26.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Babat
,
L. B.
, and
Dvorak
,
J.
, 1998, “
Simulation of Whiplash Trauma Using Whole Cervical Spine Specimens
,”
Spine
0362-2436,
1
, 23(
1
), pp.
17
24
.
27.
Ono
,
K.
,
Kaneoka
,
K.
,
Wittek
,
A.
, and
Kajzer
,
J.
, 1997, “
Cervical Injury Mechanism Based on the Analysis of Human Cervical Vertebral Motion and Head-Neck-Torso Kinematics During Low-Speed Rear Impacts
,”
41st Stapp Car Conference
, Lake Buena Vista, Florida.
28.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
, 1996, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
0362-2436,
1
, 21(
15
), pp.
1824
1834
.
29.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
, 2000, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disk
,”
Spine
0362-2436,
15
, 25(
6
), pp.
662
669
.
You do not currently have access to this content.