Ultrasound velocity is one of the key acoustic parameters for noninvasive diagnosis of osteoporosis. Ultrasound phase velocity can be uniquely measured from the phase of the ultrasound signal at a specified frequency. Many previous studies used fast Fourier transform (FFT) to determine the phase velocity, which may cause errors due to the limitations of FFT. The new phase tracking technique applied an adaptive tracking algorithm to detect the time dependent phase and amplitude of the ultrasound signal at a specified frequency. This overcame the disadvantages of FFT to ensure the accuracy of the ultrasound phase velocity. As a result, the new method exhibited high accuracy in the measurement of ultrasound phase velocity of two phantom blocks with the error less than 0.4%. 41 cubic trabecular samples from sheep femoral condyles were used in the study. The phase velocity of the samples using the new method had significantly high correlation to the bulk stiffness of the samples (r=0.84) compared to the phase velocity measured using fast Fourier transform FFT (r=0.14). In conclusion, the new method provided an accurate measurement of the ultrasound phase velocity in bone.

1.
Marcus
,
R.
,
Feldman
,
D.
, and
Kelsey
,
J.
, 2001,
Osteoporosis
,
Academic
, San Diego, Chap. 35.
2.
Njeh
,
C. F.
,
Hans
,
D.
,
Fuerst
,
T.
,
Gluer
,
C. C.
, and
Genant
,
H. K.
, 1999,
Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status
,
Martin Dunitz
, London, Chaps. 1, 4.
3.
Prins
,
S. H.
,
Jorgensen
,
H. L.
,
Jorgensen
,
L. V.
, and
Hassager
,
C.
, 1998, “
The Role of Quantitative Ultrasound in the Assessment of Bone: A Review
,”
Clin. Physiol.
0144-5979,
18
(
1
), pp.
3
17
.
4.
Nicholson
,
P. H.
,
Haddaway
,
M. J.
, and
Davie
,
M. W. J.
, 1994, “
The Dependence of Ultrasonic Properties on Orientation in Human Vertebral Bone
,”
Phys. Med. Biol.
0031-9155,
39
(
6
), pp.
1013
1024
.
5.
Han
,
S.
,
Rho
,
J.
,
Medige
,
J.
, and
Ziv
,
I.
, 1996, “
Ultrasound Velocity and Broadband Attenuation Over a Wide Range of Bone Mineral Density
,”
Osteoporosis Int.
0937-941X,
6
(
4
), pp.
291
296
.
6.
Tavakoli
,
M. B.
, and
Evans
,
J. A.
, 1991, “
Dependence of the Velocity and Attenuation of Ultrasound in Bone on the Mineral Content
,”
Phys. Med. Biol.
0031-9155,
36
(
11
), pp.
1529
1537
.
7.
Lin
,
W.
,
Qin
,
Y. X.
, and
Rubin
,
C.
, 2001, “
Ultrasonic Wave Propagation in Trabecular Bone Predicted by the Stratified Model
,”
Ann. Biomed. Eng.
0090-6964,
29
(
9
), pp.
781
790
.
8.
Wear
,
K. A.
, and
Laib
,
A.
, 2002, “
Relationship Between Ultrasonic Backscatter and Trabecular Thickness in Human Calcaneus: Theory and Experiment
,”
J. Bone Miner. Res.
0884-0431,
17
, p.
S419
.
9.
Ashman
,
R. B.
,
Corin
,
J. D.
, and
Turner
,
C. H.
, 1987, “
Elastic Properties of Cancellous Bone: Measurement by an Ultrasonic Technique
,”
J. Biomech.
0021-9290,
20
(
10
), pp.
979
986
.
10.
Turner
,
C. H.
, and
Eich
,
M.
, 1991, “
Ultrasonic Velocity As a Predictor of Strength in Bovine Cancellous Bone
,”
Calcif. Tissue Int.
0171-967X,
49
(
2
), pp.
116
119
.
11.
Njeh
,
C. F.
,
Kuo
,
C. W.
,
Langton
,
C. M.
,
Atrah
,
H. I.
, and
Boivin
,
C. M.
, 1997, “
Prediction of Human Femoral Bone Strength Using Ultrasound Velocity and BMD: An in Vitro Study
,”
Osteoporosis Int.
0937-941X,
7
(
5
), pp.
471
477
.
12.
Wear
,
K. A.
, 2001, “
A Numerical Method to Predict the Effects of Frequency-Dependent Attenuation and Dispersion Con Speed of Sound Estimates in Cancellous Bone
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
3
), pp.
1213
1218
.
13.
Nicholson
,
P. H.
,
Lowet
,
G.
,
Langton
,
C. M.
,
Dequeker
,
J.
, and
van der Perre
,
G.
, 1996, “
A Comparison of Time-Domain and Frequency-Domain Approaches to Ultrasonic Velocity Measurement in Trabecular Bone
,”
Phys. Med. Biol.
0031-9155,
41
(
11
), pp.
2421
2435
.
14.
Cioffi
,
J. M.
, and
Kailath
,
T.
, 1984, “
Fast RLS Transversal Filters for Adaptive Filtering
,”
IEEE Trans. Acoust., Speech, Signal Process.
0096-3518,
32
(
2
), pp.
304
337
.
15.
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
, 2004, “
Mechanisms of Uniformity of Yield Strains for Trabecular Bone
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1671
1678
.
16.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
, 2004, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
27
35
.
17.
Droin
,
P.
,
Berger
,
G.
, and
Laugier
,
P.
, 1998, “
Velocity Dispersion of Acoustic Waves in Cancellous Bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
45
(
3
), pp.
581
592
.
18.
Wear
,
K. A.
, 2000, “
Measurements of Phase Velocity and Group Velocity in Human Calcaneus
,”
Ultrasound Med. Biol.
0301-5629,
26
(
4
), pp.
641
646
.
You do not currently have access to this content.