The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2=0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175–187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore the need for structural approaches in modeling the effects of engineered tissue formation on nonwoven scaffolds, and their potential utility in scaffold design.

1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
, pp.
920
926
.
2.
Rabkin
,
E.
,
Hoerstrup
,
S. P.
,
Aikawa
,
M
,
Mayer
,
J. E.
, Jr.
, and
Schoen
,
F. J.
, 2002, “
Evolution of Cell Phenotype and Extracellular Matrix in Tissue-Engineered Heart Valves During In-Vitro Maturation and In-Vivo Remodeling
,”
J. Heart Valve Dis.
0966-8519,
11
(
3
), pp.
308
314
; discussion 314.
3.
Hutmacher
,
D. W.
, 2001, “
Scaffold Design and Fabrication Technologies for Engineering Tissues—State of the Art and Future Perspectives
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
12
(
1
), pp.
107
124
.
4.
Lu
,
S. H.
,
Sacks
,
M. S.
,
Chung
,
S. Y.
,
Gloeckner
,
D. C.
,
Pruchnic
,
R.
,
Huard
,
J.
,
De Groat
,
W. C.
, and
Chancellor
,
M. B.
, 2005, “
Biaxial Mechanical Properties of Muscle-Derived Cell Seeded Small Intestinal Submucosa for Bladder Wall Reconstitution
,”
Biomaterials
0142-9612,
26
(
4
), pp.
443
449
.
5.
Stankus
,
J. J.
,
Guan
,
J.
,
Fujimoto
,
K.
, and
Wagner
,
W. R.
, 2006, “
Microintegrating Smooth Muscle Cells Into a Biodegradable, Elastomeric Fiber Matrix
,”
Biomaterials
0142-9612,
27
(
5
), pp.
735
744
.
6.
Freed
,
L. E.
,
Vunjak-Novakovic
,
G.
,
Biron
,
R. J.
,
Eagles
,
D. B.
,
Lesnoy
,
D. C.
,
Barlow
,
S. K.
, and
Langer
,
R.
, 1994, “
Biodegradable Polymer Scaffolds for Tissue Engineering
,”
Biotechnology
0740-7378,
12
, pp.
689
693
.
7.
Hearle
,
J. W. S.
, and
Purdy
,
A. T.
, 1971, “
The Structure of Needle Punched Fabric
,”
Fibre Sci. Technol.
0015-0568,
4
, pp.
81
100
.
8.
Hearle
,
J. W. S.
, and
Purdy
,
A. T.
, 1972, “
On the Nature of Deformation of Needled Fabrics
,”
Fibre Sci. Technol.
0015-0568,
5
(
2
), pp.
113
128
.
9.
Hearle
,
J. W. S.
, and
Purdy
,
A. T.
, 1978, “
On Resistance to Slippage in Needled Fabrics
,”
Fibre Sci. Technol.
0015-0568,
11
(
2
), pp.
127
144
.
10.
Engelmayr
,
G. C.
, Jr.
,
Rabkin
,
E.
,
Sutherland
,
F. W.
,
Schoen
,
F. J.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
, 2005, “
The Independent Role of Cyclic Flexure in the Early In Vitro Development of an Engineered Heart Valve Tissue
,”
Biomaterials
0142-9612,
26
(
2
), pp.
175
187
.
11.
Sutherland
,
F. W.
,
Perry
,
T. E.
,
Yu
,
Y.
,
Sherwood
,
M. C.
,
Rabkin
,
E.
,
Masuda
,
Y.
,
Garcia
,
G. A.
,
McLellan
,
D. L.
,
Engelmayr
,
G. C.
, Jr.
,
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
, Jr.
, 2005, “
From Stem Cells to Viable Autologous Semilunar Heart Valve
,”
Circulation
0009-7322,
111
(
21
), pp.
2783
2791
.
12.
Hoerstrup
,
S. P.
,
Sodian
,
R.
,
Daebritz
,
S.
,
Wang
,
J.
,
Bacha
,
E. A.
,
Martin
,
D. P.
,
Moran
,
A. M.
,
Guleserian
,
K. J.
,
Sperling
,
J. S.
,
Kaushal
,
S.
,
Vacanti
,
J. P.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
, Jr.
, 2000, “
Functional Living Trileaflet Heart Valves Grown In Vitro
,”
Circulation
0009-7322,
102
(
19 Suppl 3
), pp.
III44
III49
.
13.
Oberpenning
,
F.
,
Meng
,
J.
,
Yoo
,
J. J.
, and
Atala
,
A.
, 1999, “
De Novo Reconstitution of a Functional Mammalian Urinary Bladder by Tissue Engineering [see Comments]
,”
Nat. Biotechnol.
1087-0156,
17
(
2
), pp.
149
155
.
14.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbott
,
W. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
, 1999, “
Functional Arteries Grown In Vitro
,”
Science
0036-8075,
284
(
5413
), pp.
489
493
.
15.
Gooch
,
K. J.
,
Blunk
,
T.
,
Courter
,
D. L.
,
Sieminski
,
A. L.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
, 2002, “
Bone Morphogenetic Proteins-2, -12, and -13 Modulate In Vitro Development of Engineered Cartilage
,”
Tissue Eng.
1076-3279,
8
(
4
), pp.
591
601
.
16.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
280
287
.
17.
Backer
,
S.
, and
Petterson
,
D. R.
, 1960, “
Some Principles of Nonwoven Fabrics
,”
Text. Res. J.
0040-5175,
30
(
9
), pp.
704
711
.
18.
Cox
,
H. L.
, 1952, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
0508-3443,
3
(
3
), pp.
72
79
.
19.
Hearle
,
J. W. S.
, and
Newton
,
A.
, 1967, “
Nonwoven Fabric Studies; Part XIII: The Influence of the Binder on the Tensile Properties of Nonwovens
,”
Text. Res. J.
0040-5175,
37
(
6
), pp.
495
503
.
20.
Hearle
,
J. W. S.
, and
Stevenson
,
P. J.
, 1963, “
Nonwoven Fabric Studies; Part III: The Anisotropy of Nonwoven Fabrics
,”
Text. Res. J.
0040-5175,
33
(
11
), pp.
877
888
.
21.
Hearle
,
J. W. S.
, and
Sultan
,
M. A. I.
, 1968, “
A Study of Needled Fabrics; Part V: The Approach to Theoretical Understanding
,”
J. Text. Inst.
0040-5000,
59
, pp.
183
201
.
22.
Hearle
,
J. W. S.
, and
Sultan
,
M. A. I.
, 1967, “
A Study of Needled Fabrics; Part I: Experimental Methods and Properties
,”
J. Text. Inst.
0040-5000,
58
, pp.
251
265
.
23.
Kim
,
B. S.
, and
Mooney
,
D. J.
, 2000, “
Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
3
), pp.
210
215
.
24.
Mol
,
A.
,
Bouten
,
C. V.
,
Zund
,
G.
,
Gunter
,
C. I.
,
Visjager
,
J. F.
,
Turina
,
M. I.
,
Baaijens
,
F. P.
, and
Hoerstrup
,
S. P.
, 2003, “
The Relevance of Large Strains in Functional Tissue Engineering of Heart Valves
,”
Thorac. Cardiovasc. Surg.
0171-6425,
51
(
2
), pp.
78
83
.
25.
Engelmayr
,
G. C.
, Jr.
,
Hildebrand
,
D. K.
,
Sutherland
,
F. W.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
, 2003, “
A Novel Bioreactor for the Dynamic Flexural Stimulation of Tissue Engineered Heart Valve Biomaterials
,”
Biomaterials
0142-9612,
24
(
14
), pp.
2523
2532
.
26.
Gloeckner
,
D. C.
,
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1999, “
Effects of Mechanical Fatigue on the Bending Properties of the Porcine Bioprosthetic Heart Valve
,”
ASAIO J.
1058-2916,
45
(
1
), pp.
59
63
.
27.
Freeston
,
W. D.
, Jr.
, and
Platt
,
M. M.
, 1965, “
Mechanics of Elastic Performance of Textile Materials; Part XVI: Bending Rigidity of Nonwoven Fabrics
,”
Text. Res. J.
0040-5175,
35
(
1
), pp.
48
57
.
28.
Lee
,
S. M.
, and
Argon
,
A. S.
, 1983, “
The Mechanics of the Bending of Non-Woven Fabrics Part II: Spunbonded Fabric With Spot Bonds (Fibretex)
,”
J. Text. Inst.
0040-5000,
74
(
1
), pp.
12
18
.
29.
Frisch-Fay
,
R.
, 1962,
Flexible Bars
,
Butterworths
, Washington, DC, p.
220
.
30.
Freeston
,
W. D.
, Jr.
, and
Platt
,
M. M.
, 1965, “
Bending Rigidity of Random Webs
,”
Text. Res. J.
0040-5175,
35
(
5
), pp.
480
481
.
31.
Gray
,
J.
, personal communication.
32.
Termonia
,
Y.
, 2003, “
Lattice Model for the Drape and Bending Properties of Nonwoven Fabrics
,”
Text. Res. J.
0040-5175,
73
(
1
), pp.
74
78
.
33.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
(
4
), pp.
678
689
.
34.
Sacks
,
M. S.
,
Chuong
,
C. J.
,
Petroll
,
W. M.
,
Kwan
,
M.
, and
Halberstadt
,
C.
, 1997, “
Collagen Fiber Architecture of a Cultured Dermal Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
1
), pp.
124
127
.
35.
Chen
,
V. J.
, and
Ma
,
P. X.
, 2004, “
Nano-Fibrous Poly(L-Lactic Acid) Scaffolds With Interconnected Spherical Macropores
,”
Biomaterials
0142-9612,
25
(
11
), pp.
2065
2073
.
36.
Gao
,
J.
,
Niklason
,
L.
, and
Langer
,
R.
, 1998, “
Surface Hydrolysis of Poly(Glycolic Acid) Meshes Increases the Seeding Density of Vascular Smooth Muscle Cells
,”
J. Biomed. Mater. Res.
0021-9304,
42
(
3
), pp.
417
424
.
37.
Slivka
,
M. A.
,
Chu
,
C. C.
, and
Adisaputro
,
I. A.
, 1997, “
Fiber-Matrix Interface Studies on Bioabsorbable Composite Materials for Internal Fixation of Bone Fractures. I. Raw Material Evaluation and Measurement of Fiber-Matrix Interfacial Adhesion
,”
J. Biomed. Mater. Res.
0021-9304,
36
(
4
), pp.
469
477
.
38.
Eberhardt
,
C. N.
, and
Clarke
,
A. R.
, 2002, “
Automated Reconstruction of Curvilinear Fibres From 3D Datasets Acquired by X-Ray Microtomography
,”
J. Microsc.
0022-2720,
206
, pp.
41
53
.
39.
Prabhakar
,
V.
,
Grinstaff
,
M. W.
,
Alarcon
,
J.
,
Knors
,
C.
,
Solan
,
A. K.
, and
Niklason
,
L. E.
, 2003, “
Engineering Porcine Arteries: Effects of Scaffold Modification
,”
J. Biomed. Mater. Res.
0021-9304,
67A
(
1
), pp.
303
311
.
40.
Mirnajafi
,
A.
,
Raymer
,
J.
,
Scott
,
M. J.
, and
Sacks
,
M. S.
, 2005, “
The Effects of Collagen Fiber Orientation on the Flexural Properties of Pericardial Heterograft Biomaterials
,”
Biomaterials
0142-9612,
26
(
7
), pp.
795
804
.
41.
Cusick
,
G. E.
,
Hearle
,
J. W. S.
,
Michie
,
R. I. C.
,
Peters
,
R. H.
, and
Stevenson
,
P. J.
, 1963, “
Physical Properties of Some Commerical Non-Woven Fabrics
,”
J. Text. Inst.
0040-5000,
54
, pp.
P52
P74
.
42.
Kim
,
B. S.
, and
Mooney
,
D. J.
, 1998, “
Engineering Smooth Muscle Tissue With a Predefined Structure
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
2
), pp.
322
332
.
43.
Hearle
,
J. W. S.
,
Sultan
,
M. A. I.
, and
Choudhari
,
T. N.
, 1968, “
A Study of Needled Fabrics; Part II: Effects of the Needling Process
,”
J. Text. Inst.
0040-5000,
59
, pp.
103
116
.
44.
Gibson
,
R. F.
, 1994, “
Principles of Composite Material Mechanics
,”
McGraw-Hill Series in Mechanical Engineering
,
McGraw-Hill
, New York,
xvii
, pp.
425
.
45.
Akbarov
,
S. D.
, and
Guz
,
A. N.
, 2000, “
Mechanics of Curved Composites
,”
Solid Mechanics and its Applications
, Vol. 78,
Kluwer Academic
, Dordrecht,
xvi
, p.
441
.
46.
Shum
,
A.
, and
Mak
,
A.
, 2003, “
Morphological and Biomechanical Characterization of Poly(Glycolic Acid) Scaffolds After In Vitro Degradation
,”
Polym. Degrad. Stab.
0141-3910,
81
(
1
), pp.
141
149
.
You do not currently have access to this content.