Endovascular coiling is an acceptable treatment of intracranial aneurysms, yet long term follow-ups suggest that endovascular coiling fails to achieve complete aneurysm occlusions particularly in wide-neck and giant aneurysms. Placing of a stentlike device across the aneurysm neck may be sufficient to occlude the aneurysm by promoting intra-aneurysmal thrombosis; however, conclusive evidence of its efficacy is still lacking. In this study, we investigate in vitro the efficacy of custom designed flow divertors that will be subsequently implanted in a large cohort of animals. The aim of this study is to provide a detailed database against which in vivo results can be analyzed. Six custom designed flow divertors were fabricated and tested in vitro. The design matrix included three different porosities (75%, 70%, and 65%). For each porosity, there were two divertors with one having a nominal pore density double than that of the other. To quantify efficacy, the divertors were implanted in a compliant elastomeric model of an elastase-induced aneurysm model in rabbit and intra-aneurysmal flow changes were evaluated by particle image velocimetry (PIV). PIV results indicate a marked reduction in intra-aneurysmal flow activity after divertor implantation in the innominate artery across the aneurysm neck. The mean hydrodynamic circulation after divertor implantation was reduced to 14% or less of the mean circulation in the control and the mean intra-aneurysmal kinetic energy was reduced to 29% or less of its value in the control. The intra-aneurysmal wall shear rate in this model is low and implantation of the flow divertor did not change the wall shear rate magnitude appreciably. This in vitro experiment evaluates the characteristics of local flow phenomena such as hydrodynamic circulation, kinetic energy, wall shear rate, perforator flow, and changes of these parameters as a result of implantation of stentlike flow divertors in an elastomeric replica of elastase-induced saccular aneurysm model in rabbit. These initial findings offer a database for evaluation of in vivo implantations of such devices in the animal model and help in further development of cerebral aneurysm bypass devices.

1.
Mitchell
,
P.
,
Gholkar
,
A.
,
Vindlacheruvu
,
R. R.
, and
Mendelow
,
A. D.
, 2004, “
Unruptured Intracranial Aneurysms: Benign Curiosity or Ticking Bomb?
,”
Lancet Neurol.
1474-4422,
3
, pp.
85
92
.
2.
Lozier
,
A. P.
,
Connolly
,
E. S.
,
Lavine
,
S. D.
, and
Solomon
,
R. A.
, 2002, “
Guglielmi Detachable Coil Embolization of Posterior Circulation Aneurysms: A Systematic Review of the Literature
,”
Stroke
0039-2499,
33
, pp.
2509
2518
.
3.
International Subarachnoid Aneurysm Trial
(ISAT) Collaborative Group, 2002, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomised Trial
,”
Lancet
0140-6736,
360
, pp.
1267
1274
.
4.
Maurice-Williams
,
R. S.
, and
Lafuente
,
J.
, 2003, “
Intracranial Aneurysm Surgery and Its Future
,”
J. R. Soc. Med.
0141-0768,
96
, pp.
540
543
.
5.
Fernandez
,
Z. A.
,
Guglielmi
,
G.
, and
Vinuela
,
P.
, 1994, “
Endovascular Occlusion of Intracranial Aneurysms with Electrically Detachable Coils: Correlation of Aneurysm Neck Size and Treatment Results
,”
AJNR Am. J. Neuroradiol.
0195-6108,
15
, pp.
815
820
.
6.
Murayama
,
Y.
,
Nien
,
Y. L.
,
Duckwiler
,
G.
,
Gobin
,
Y. P.
,
Jahan
,
R.
,
Frazee
,
J.
,
Martin
,
N.
, and
Vinuela
,
F.
, 2003, “
Guglielmi Detachable Coil Embolization of Cerebral Aneurysms: 11Years’ Experience
,”
J. Neurosurg.
0022-3085,
98
, pp.
959
966
.
7.
Turjman
,
F.
,
Massoud
,
T. F.
,
Ji
,
C.
,
Guglielmi
,
G.
,
Vinuela
,
F.
, and
Robert
,
J.
, 1994, “
Combined Stent Implantation and Endosaccular Coil Placement for Treatment of Experimental Wide-Necked Aneurysms: A Feasibility Study in Swine
,”
AJNR Am. J. Neuroradiol.
0195-6108,
15
, pp.
1087
1090
.
8.
Massoud
,
T. F.
,
Turjman
,
F.
,
Ji
,
C.
,
Vinuelas
,
F.
,
Guglieli
,
G.
,
Gobin
,
Y. P.
, and
Duckwiler
,
G. R.
, 1995, “
Endovascular Treatment of Fusiform Aneurysms with Stents and Coils: Technical Feasibility in a Swine Model
,”
AJNR Am. J. Neuroradiol.
0195-6108,
16
, pp.
1953
1963
.
9.
Wakhloo
,
A. K.
,
Lanzino
,
G.
,
Lieber
,
B. B.
, and
Hopkins
,
L. N.
, 1998, “
Stents for Intracranial Aneurysms: The Beginning of a New Endovascular Era?
,”
Neurosurgery
0148-396X,
43
, pp.
377
379
.
10.
Sekhon
,
L. H. S.
,
Mogan
,
M. K.
,
Sorby
,
W.
, and
Grinnell
,
V.
, 1998, “
Combined Endovascular Coil Placement for the Treatment of a Wide-Necked Vertebral Artery Aneurysm: Technical Case Report
,”
Neurosurgery
0148-396X,
43
, pp.
380
384
.
11.
Lylyk
,
P.
,
Ceratto
,
R.
,
Hurvitz
,
D.
, and
Basso
,
A.
, 1998, “
Treatment of a Vertebral Dissecting Aneurysm With Stents and Coils: Technical Case Report
,”
Neurosurgery
0148-396X,
43
, pp.
385
388
.
12.
Wakhloo
,
A. K.
,
Schellhammer
,
F.
,
de Vries
,
J.
,
Haberstroh
,
J.
, and
Schumacher
,
M.
, 1994, “
Self-Expanding and Ballon-Expandable Stents in the Treatment of Carotid Aneurysms: An Experimental Study in a Canine Model
,”
AJNR Am. J. Neuroradiol.
0195-6108,
15
, pp.
493
502
.
13.
Aenis
,
M.
,
Stancampiano
,
A. P.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 1997, “
Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model
,”
ASME J. Biomech. Eng.
0148-0731,
199
, pp.
206
212
.
14.
Yu
,
S. C. M.
, and
Zhao
,
J. B.
, 1999, “
A Steady Flow Analysis on the Stented and Non-Stented Sidewall Aneurysm Models
,”
Med. Eng. Phys.
1350-4533,
21
, pp.
133
141
.
15.
Rhee
,
K.
,
Han
,
M. H.
, and
Cha
,
S. H.
, 2002, “
Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Geometry and Stent Porosity
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
894
904
.
16.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
, and
Wakhloo
,
A. K.
, 2002, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
768
777
.
17.
Liou
,
T.
,
Liou
,
S.
, and
Chu
,
K.
, 2004, “
Intra-Aneurysmal Flow With Helix and Mesh Stent Placement Across Side-Wall Aneurysm Pore of a Straight Parent Vessel
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
36
43
.
18.
Barath
,
K.
,
Cassot
,
F.
,
Rufenacht
,
D. A.
, and
Fasel
,
J. H. D.
, 2004, “
Anatomically Shaped Internal Carotid Artery Aneurysm In Vitro Model for Flow Analysis to Evaluate Stent Effect
,”
AJNR Am. J. Neuroradiol.
0195-6108,
25
, pp.
1750
1759
.
19.
Caton
,
G.
,
Levy
,
D. L.
,
Lasheras
,
J. C.
, and
Nelson
,
P. K.
, 2005, “
Flow Changes Caused by the Sequential Placement of Stents Across the Neck of Sidewall Cerebral Aneurysms
,”
J. Neurosurg.
0022-3085,
103
, pp.
891
902
.
20.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2000, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
572
578
.
21.
Seong
,
J.
,
Sadasivan
,
C.
,
Onizuka
,
M.
,
Gounis
,
M. J.
,
Christian
,
F.
,
Miskolczi
,
L.
,
Wakhloo
,
A. J.
, and
Lieber
,
B. B.
, 2005, “
Morphology of Elastase-Induced Cerebral Aneurysm Model in Rabbit and Rapid Prototyping of Elastomeric Transparent Replicas
,”
Biorheology
0006-355X,
42
, pp.
345
361
.
22.
Miskolczi
,
L.
,
Gounis
,
M. J.
,
Onizuka
,
M.
,
Cesar
,
L.
,
Lieber
,
B. B.
,
Wakhloo
,
A. K.
, and
Anaya
,
C. A.
, 2004, “
Elastase-Induced Saccular Aneurysms in Rabbits: Instructions ‘for the Rest of Us’
,”
Proceedings of the 42nd Annual Meeting American Society of Neuroradiology
,
Seattle
,
WA
, Jun. 5–11, p.
352
.
23.
Onizuka
,
M.
,
Miskolczi
,
L.
,
Gounis
,
M. J.
,
Seong
,
J.
,
Lieber
,
B. B.
, and
Wakhloo
,
A. K.
, 2006, “
Elastase-Induced Aneurysms in Rabbits—Effect of Post-Construction Geometry on Final Size
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
, pp.
1129
31
.
24.
Livescu
,
V.
, 2001, “
Influence of Stent Design on Interaneurysmal Flow: A PIV Study
,” MS thesis, State University of New York at Buffalo, Buffalo, NY.
25.
Sadasivan
,
C.
,
Lieber
,
B. B.
,
Cesar
,
L.
,
Miskolczi
,
L.
,
Seong
,
J.
, and
Wakhloo
,
A. K.
, 2006, “
Angiographic Assessment of the Performance of Flow Divertors to Treat Cerebral Aneurysms
,”
Proceedings of the 28th IEEE EMBS Annual International Conference
,
New York City
,
NY
, Aug. 30–Sept. 3, 2006, pp.
3210
3213
.
26.
Lieber
,
B. B.
,
Sadasivan
,
C.
,
Miskolczi
,
L.
,
Cesar
,
L.
,
Seong
,
J.
, and
Wakhloo
,
A. K.
, 2006, “
Flow Divertors to Treat Cerebral Aneurysms: Preliminary Results in the Rabbit Elastase-Induced Aneurysm Model
,”
Summer Bioengineering Conference
, Jun. 21–25,
Amelia Island
,
FL
.
27.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
, 2004, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamics Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
0039-2499,
35
, pp.
2500
2505
.
28.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
, 2005, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
, pp.
2550
2559
.
29.
Marinković
,
S.
,
Gibo
,
H.
,
Brigante
,
L.
,
Nikodijevic
,
I.
, and
Petrovic
,
P.
, 1999, “
The Surgical Anatomy of the Perforating Branches of the Anterior Choroidal Artery
,”
Surg. Neurol.
0090-3019,
52
, pp.
30
36
.
30.
Fahrig
,
R.
,
Nikolov
,
H.
,
Fox
,
A. J.
, and
Holdsworth
,
D. W.
, 1999, “
A Three-Dimensional Cerebrovascular Flow Phantom
,”
Med. Phys.
0094-2405,
26
, pp.
1589
1599
.
31.
Gailloud
,
P.
,
Muster
,
M.
,
Piotin
,
M.
,
Mottu
,
F.
,
Murphy
,
K. J.
,
Fasel
,
J. H.
, and
Rufenacht
,
D. A.
, 1999, “
In Vitro Models of Intracranial Arteriovenous Fistulas for the Evaluation of New Endovascular Treatment Materials
,”
AJNR Am. J. Neuroradiol.
0195-6108,
20
, pp.
291
295
.
32.
Spaeth
,
E. E.
,
Robetrs
,
G. W.
,
Yadwadkar
,
S. R.
,
Ng
,
P. K.
, and
Jackson
,
C. M.
, 1973, “
The Influence of Fluid Shear on the Kinetics of Blood Coagulation Reactions
,”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
19
, pp.
179
187
.
33.
Wakhloo
,
A. K.
,
Lieber
,
B. B.
,
Sandhu
,
J. S.
, and
Gounis
,
M. J.
, 2004, “
Flow Dynamics in Aneurysms
,” in
Management of Cerebral Aneurysms
,
Leroux
,
P. D.
,
Winn
,
H. R.
,
Newell
,
D. W.
, eds.,
Saunders
,
Philadelphia, PA
, pp.
99
120
.
34.
Suzuki
,
J.
, and
Ohara
,
H.
, 1978, “
Clinicopathological Study of Cerebral Aneurysms: Origin, Rupture, Repair, and Growth
,”
J. Neurosurg.
0022-3085,
48
(
4
), pp.
505
514
.
35.
Ujiie
,
H.
,
Tachibana
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
, 1999, “
Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
45
(
1
), pp.
119
130
.
36.
Tateshima
,
S.
,
Murayama
,
Y.
,
PabloVillablanca
,
J. P.
,
Morino
,
T.
,
Nomura
,
K.
,
Tanishita
,
K.
, and
Viñuela
,
F.
, 2003, “
In Vitro Measurement of Fluid-Induced Wall Shear Stress in Unruptured Cerebral Aneurysms Harboring Blebs
,” Stroke,
34
, pp.
187
192
.
37.
Liou
,
T.-M.
, and
Liou
,
S.-N.
, 2004, “
Pulsatile Flows in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel
,”
Exp. Mech.
0014-4851,
44
, pp.
253
260
.
38.
Lanzino
,
G.
,
Wakhloo
,
A. K.
,
Fessler
,
R. D.
,
Hartney
,
M. L.
,
Guterman
,
L. R.
, and
Hopkins
,
L. N.
, 1999, “
Efficacy and Current Limitations of Intravascular Stents for Intracranial Internal Carotid, Vertebral, and Basilar Artery Aneurysms
,”
J. Neurosurg.
0022-3085,
91
(
4
), pp.
538
546
.
39.
Lopes
,
D. K.
,
Ringer
,
A. J.
,
Boulos
,
A. S.
,
Qureshi
,
A. I.
,
Lieber
,
B. B.
,
Guterman
,
L. R.
, and
Hopkins
,
L. N.
, 2003, “
Fate of Branch Arteries After Intracranial Stenting
,”
Neurosurgery
0148-396X,
52
(
6
), pp.
1275
12758
.
You do not currently have access to this content.