Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)–collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5min to a peak strain of 2.4%, for 8hday for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048±0.009 versus 0.015±0.004; mean±SEM (standard error of the mean ) N/mm) and linear modulus (0.016±0.004 versus 0.005±0.001; mean±SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.

1.
Praemer
,
A.
,
Furner
,
S.
, and
Rice
,
D.
, 1999,
Musculoskeletal Condition in the United States
, 2nd ed.,
American Academy of Orthopaedic Surgeons
,
Parke Ridge, IL
, p.
182
.
2.
Young
,
R. G.
,
Butler
,
D. L.
,
Weber
,
W.
,
Caplan
,
A. I.
,
Gordon
,
S. L.
, and
Fink
,
D. J.
, 1998, “
Use of Mesenchymal Stem Cells in a Collagen Matrix for Achilles Tendon Repair
,”
J. Orthop. Res.
0736-0266,
16
(
4
), pp.
406
413
.
3.
Awad
,
H. A.
,
Butler
,
D. L.
,
Boivin
,
G. P.
,
Smith
,
F. N.
,
Malaviya
,
P.
,
Huibregtse
,
B.
, and
Caplan
,
A. I.
, 1999, “
Autologous Mesenchymal Stem Cell-Mediated Repair of Tendon
,”
Tissue Eng.
1076-3279,
5
(
3
), pp.
267
277
.
4.
Awad
,
H. A.
,
Boivin
,
G. P.
,
Dressler
,
M. R.
,
Smith
,
F. N.
,
Young
,
R. G.
, and
Butler
,
D. L.
, 2003, “
Repair of Patellar Tendon Injuries Using a Cell-Collagen Composite
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
420
431
.
5.
Juncosa-Melvin
,
N.
,
Shearn
,
J. T.
,
Boivin
,
G. P.
,
Gooch
,
C.
,
Galloway
,
M. T.
,
West
,
J. R.
,
Nirmalanandhan
,
V. S.
,
Bradica
,
G.
, and
Butler
,
D. L.
, 2006, “
Effects of Mechanical Stimulation on the Biomechanics and Histology of Stem Cell-Collagen Sponge Constructs for Rabbit Patellar Tendon Repair
,”
Tissue Eng.
1076-3279,
12
(
8
), pp.
2291
2300
.
6.
Kannus
,
P.
, 2000, “
Structure of the Tendon Connective Tissue
,”
Scand. J. Med. Sci. Sports
0905-7188,
10
(
6
), pp.
312
320
.
7.
Amiel
,
D.
,
Frank
,
C.
,
Harwood
,
F.
,
Fronek
,
J.
, and
Akeson
,
W.
, 1984, “
Tendons and Ligaments: A Morphological and Biochemical Comparison
,”
J. Orthop. Res.
0736-0266,
1
(
3
), pp.
257
265
.
8.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
, 2000, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
570
575
.
9.
Butler
,
D. L.
,
Juncosa
,
N.
, and
Dressler
,
M. R.
, 2004, “
Functional Efficacy of Tendon Repair Processes
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
303
329
.
10.
Altman
,
G. H.
,
Horan
,
R. L.
,
Martin
,
I.
,
Farhadi
,
J.
,
Stark
,
P. R.
,
Volloch
,
V.
,
Richmond
,
J. C.
,
Vunjak-Novakovic
,
G.
, and
Kaplan
,
D. L.
, 2002, “
Cell Differentiation by Mechanical Stress
,”
FASEB J.
0892-6638,
16
(
2
), pp.
270
272
.
11.
Isenberg
,
B. C.
, and
Tranquillo
,
R. T.
, 2003, “
Long-Term Cyclic Distention Enhances the Mechanical Properties of Collagen-Based Media-Equivalents
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
937
949
.
12.
Garvin
,
J.
,
Qi
,
J.
,
Maloney
,
M.
, and
Banes
,
A. J.
, 2003, “
Novel System for Engineering Bioartificial Tendons and Application of Mechanical Load
,”
Tissue Eng.
1076-3279,
9
(
5
), pp.
967
979
.
13.
Wang
,
H.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
, 1995, “
Cell Orientation Response to Cyclically Deformed Substrates: Experimental Validation of a Cell Model
,”
J. Biomech.
0021-9290,
28
pp.
1543
1552
.
14.
Neidlinger-Wilke
,
C.
,
Grood
,
E.
,
Wang
,
J. -C.
,
Brand
,
R.
, and
Claes
,
L.
, 2001, “
Cell Alignment is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
0736-0266,
19
(
2
), pp.
286
293
.
15.
Buck
,
R. C.
, 1980, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
0014-4827,
127
, pp.
470
447
.
16.
Zeichen
,
J.
,
van Griensven
,
M.
, and
Bosch
,
U.
, 2000, “
The Proliferative Response of Isolated Human Tendon Fibroblasts to Cyclic Biaxial Mechanical Strain
,”
Am. J. Sports Med.
0363-5465,
28
, pp.
888
892
.
17.
Banes
,
A. J.
,
Gilbert
,
J.
,
Taylor
,
D.
, and
Monbureau
,
O.
, 1985, “
A New Vacuum-Operated Stress-Providing Instrument That Applies Static or Variable Duration Cyclic Tension or Compression to Cells in Vitro
,”
J. Cell. Sci.
0021-9533,
75
, pp.
35
42
.
18.
Brighton
,
C. T.
,
Strafford
,
B.
,
Gross
,
S. B.
,
Leatherwood
,
D. F.
,
Williams
,
J. L.
, and
Pollack
,
S. R.
, 1991, “
The Proliferative and Synthetic Response of Isolated Calvarial Bone Cells of Rats to Cyclic Biaxial Mechanical Strain
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
73
, pp.
320
331
.
19.
Buckley
,
M. J.
,
Banes
,
A. J.
,
Levin
,
L. G.
,
Sumpio
,
B. E.
,
Sato
,
M.
,
Jordan
,
R.
,
Gilbert
,
J.
,
Link
,
G. W.
, and
Tran
,
S. T.
, 1998, “
Osteoblasts Increase Their Rate of Division and Align in Response to Cyclic, Mechanical Tension In Vitro
,”
Bone Miner.
0169-6009,
4
, pp.
225
236
.
20.
Skutek
,
M.
,
van Griensven
,
M.
,
Zeichen
,
J.
,
Brauer
,
N.
, and
Bosch
,
U.
, 2001, “
Cyclic Mechanical Stretching Modulates Secretion Pattern of Growth Factors in Human Tendon Fibroblasts
,”
Eur. J. Appl. Physiol.
0301-5548,
86
, pp.
48
52
.
21.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
, 1991, “
Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,”
Circ. Res.
0009-7330,
69
, pp.
116
122
.
22.
Shearn
,
J. T.
,
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Goodwin
,
W.
,
Gooch
,
C.
,
Dunn
,
M. G.
, and
Butler
,
D. L.
, “
Mechanical Stimulation of Tendon Tissue Engineered Constructs: Effects on Construct Stiffness, Repair Biomechanics and Their Correlation
,” J. Biomech. Eng., in press.
23.
Nirmalanandhan
,
V. S.
,
Levy
,
M. S.
,
Huth
,
A. J.
, and
Butler
,
D. L.
, 2006, “
Effects of Cell Seeding Density and Collagen Concentration on Contraction Kinetics of Mesenchymal Stem Cell-seeded Collagen Constructs
,”
Tissue Eng.
1076-3279,
12
(
7
), pp.
1865
1872
.
24.
Nabeshima
,
Y.
,
Grood
,
E. S.
,
Sakurai
,
A.
, and
Herman
,
J. H.
, 1996, “
Uniaxial Tension Inhibits Tendon Collagen Degradation by Collagenase In Vitro
,”
J. Orthop. Res.
0736-0266,
14
(
1
), pp.
123
130
.
25.
Schantz
,
E. J.
, 2001, “
A New Dynamic Culture System Designed to Provide Controlled Strain to Cell Seeded Collagen Constructs for Tendon Repair
,” MS thesis,
Engineering Mechanics
,
University of Cincinnati
,
Cincinnati
.
26.
Juncosa
,
N.
,
West
,
J. R.
,
Galloway
,
M. T.
,
Boivin
,
G. P.
, and
Butler
,
D. L.
, 2003, “
In Vivo Forces Used to Develop Design Parameters for Tissue Engineered Implants for Rabbit Patellar Tendon Repair
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
483
488
.
27.
Popov
,
E. P.
, 1990,
Engineering Mechanics of Solids
,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
727
.
28.
Montgomery
,
D.
, 2001,
Design and Analysis of Experiments
, 5th ed.,
Wiley
,
New York
.
29.
Berry
,
C. C.
,
Shelton
,
J. C.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 2003, “
Influence of External Uniaxial Cyclic Strain on Oriented Fibroblast-Seeded Collagen Gels
,”
Tissue Eng.
1076-3279,
9
(
4
), pp.
613
624
.
30.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2004, “
Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity, Viscoelasticity, and Collapse
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
152
166
.
31.
Krishnan
,
L.
,
Weiss
,
J. A.
,
Wessman
,
M D.
.
, and
Hoying
,
J. B.
, 2004, “
Design and Application of a Test System for Viscoelastic Characterization of Collagen Gels
,”
Tissue Eng.
1076-3279,
10
(
1-2
), pp.
241
252
.
32.
Juncosa-Melvin
,
N.
,
Matlin
,
K. S.
,
Holdcraft
,
R. W.
,
Nirmalanandhan
,
V. S.
, and
Butler
,
D. L.
, 2007,
Mechanical Stimulation Increases Collagen Type I and Collagen Type III Gene Expression of Stem Cell-Collagen Sponge Constructs for Patellar Tendon
,”
Tissue Eng.
1076-3279
13
(
6
), pp.
1219
1226
.
33.
Korvick
,
D.
,
Cummings
,
J.
,
Grood
,
E.
,
Holden
,
J.
,
Feder
,
S.
, and
Butler
,
D.
, 1996, “
The Use of an Implantable Force Transducer to Measure Patellar Tendon Forces in Goats
,”
J. Biomech.
0021-9290,
29
, pp.
557
561
.
34.
Malaviya
,
P.
,
Butler
,
D.
,
Korvick
,
D.
, and
Proch
,
F.
, 1998, “
In Vivo Tendon Forces Correlate With Activity Level and Remain Bounded: Evidence in a Rabbit Flexor Tendon Model
,”
J. Biomech.
0021-9290,
31
, pp.
1043
1049
.
35.
West
,
J.
,
Juncosa
,
N.
,
Galloway
,
M.
,
Boivin
,
G.
, and
Butler
,
D.
, 2004, “
Characterization of In-Vivo Achilles Tendon Forces in Rabbits During Treadmill Locomotion at Varying Speeds and Inclinations
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1647
1653
.
36.
Eriksen
,
H. A.
,
Pajala
,
A.
,
Leppilahti
,
J.
, and
Risteli
,
J.
, 2002, “
Increased Content of Type III Collagen at the Rupture Site of Human Achilles Tendon
,”
J. Orthop. Res.
0736-0266,
20
(
6
), pp.
1352
.
37.
Lovell
,
C. R.
,
Smolenski
,
K. A.
,
Duance
,
V. C.
,
Light
,
N. D.
,
Young
,
S.
, and
Dyson
,
M.
, 1987, “
Type I and III Collagen Content and Fibre Distribution in Normal Human Skin During Ageing
,”
Br. J. Dermatol.
0007-0963,
117
(
4
), pp.
419
428
.
38.
Yurchenco
,
P. D.
,
Birk
,
D. E.
, and
Mecham
R. P.
, “
Extracellular Matrix Assembly and Structure
,”
Biology of Extracellular Matrix
, 1994,
P. D.
Yurchenco
,
D. E.
Birk
, and
R. P.
Mecham
, eds.,
Academic
,
San Diego
, p.
468
.
39.
Bailey
,
A.
,
Paul
,
R.
, and
Knott
,
L.
, 1998, “
Mechanisms of Maturation and Ageing of Collagen
,”
Mech. Ageing Dev.
0047-6374,
106
, pp.
1
56
.
40.
Floridi
,
A.
,
Ippolito
,
E.
, and
Postacchini
,
F.
, 1981, “
Age-Related Changes in the Metabolism of Tendon Cells
,”
Connect. Tissue Res.
0300-8207,
9
, pp.
95
97
.
You do not currently have access to this content.