Methods to predict contact stresses in the hip can provide an improved understanding of load distribution in the normal and pathologic joint. The objectives of this study were to develop and validate a three-dimensional finite element (FE) model for predicting cartilage contact stresses in the human hip using subject-specific geometry from computed tomography image data, and to assess the sensitivity of model predictions to boundary conditions, cartilage geometry, and cartilage material properties. Loads based on in vivo data were applied to a cadaveric hip joint to simulate walking, descending stairs, and stair-climbing. Contact pressures and areas were measured using pressure sensitive film. CT image data were segmented and discretized into FE meshes of bone and cartilage. FE boundary and loading conditions mimicked the experimental testing. Fair to good qualitative correspondence was obtained between FE predictions and experimental measurements for simulated walking and descending stairs, while excellent agreement was obtained for stair-climbing. Experimental peak pressures, average pressures, and contact areas were 10.0MPa (limit of film detection), 4.45.0MPa, and 321.9425.1mm2, respectively, while FE-predicted peak pressures, average pressures, and contact areas were 10.812.7MPa, 5.16.2MPa, and 304.2366.1mm2, respectively. Misalignment errors, determined as the difference in root mean squared error before and after alignment of FE results, were less than 10%. Magnitude errors, determined as the residual error following alignment, were approximately 30% but decreased to 10–15% when the regions of highest pressure were compared. Alterations to the cartilage shear modulus, bulk modulus, or thickness resulted in ±25% change in peak pressures, while changes in average pressures and contact areas were minor (±10%). When the pelvis and proximal femur were represented as rigid, there were large changes, but the effect depended on the particular loading scenario. Overall, the subject-specific FE predictions compared favorably with pressure film measurements and were in good agreement with published experimental data. The validated modeling framework provides a foundation for development of patient-specific FE models to investigate the mechanics of normal and pathological hips.

1.
Felson
,
D. T.
,
Lawrence
,
R. C.
,
Dieppe
,
P. A.
,
Hirsch
,
R.
,
Helmick
,
C. G.
,
Jordan
,
J. M.
,
Kington
,
R. S.
,
Lane
,
N. E.
,
Nevitt
,
M. C.
,
Zhang
,
Y.
,
Sowers
,
M.
,
McAlindon
,
T.
,
Spector
,
T. D.
,
Poole
,
A. R.
,
Yanovski
,
S. Z.
,
Ateshian
,
G.
,
Sharma
,
L.
,
Buckwalter
,
J. A.
,
Brandt
,
K. D.
, and
Fries
,
J. F.
, 2000, “
Osteoarthritis: New Insights. Part 1: The Disease and Its Risk Factors
,”
Ann. Intern Med.
0003-4819,
133
, pp.
635
646
.
2.
Mankin
,
H. J.
, 1974, “
The Reaction of Articular Cartilage to Injury and Osteoarthritis (Second of Two Parts)
,”
N. Engl. J. Med.
0028-4793,
291
, pp.
1335
1340
.
3.
Mankin
,
H. J.
, 1974, “
The Reaction of Articular Cartilage to Injury and Osteoarthritis (First of Two Parts)
,”
N. Engl. J. Med.
0028-4793,
291
, pp.
1285
1292
.
4.
Mow
,
V. C.
,
Setton
,
L. A.
,
Guilak
,
F.
, and
Ratcliffe
,
A.
, 1995, “
Mechanical Factors in Articular Cartilage and Their Role in Osteoarthritis
,”
Osteoarthritic Disorders
,
American Academy of Orthopaedic Surgeons
,
Rosemont, IL
, pp.
147
171
.
5.
Poole
,
A. R.
, 1995, “
Imbalances of Anabolism and Catabolism of Cartilage Matrix Components in Osteoarthritis
,”
Osteoarthritic Disorders
,
American Academy of Orthopaedic Surgeons
,
Rosemont, IL
, pp.
247
260
.
6.
Maxian
,
T. A.
,
Brown
,
T. D.
, and
Weinstein
,
S. L.
, 1995, “
Chronic Stress Tolerance Levels for Human Articular Cartilage: Two Nonuniform Contact Models Applied to Long-Term Follow-Up of Cdh
,”
J. Biomech.
0021-9290,
28
, pp.
159
166
.
7.
Hadley
,
N. A.
,
Brown
,
T. D.
, and
Weinstein
,
S. L.
, 1990, “
The Effect of Contact Pressure Elevations and Aseptic Necrosis on Long Term Outcome of Congenital Hip Dislocation
,”
J. Orthop. Res.
0736-0266,
8
, pp.
504
510
.
8.
Afoke
,
N. Y.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
, 1987, “
Contact Pressures in the Human Hip Joint
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
69
, pp.
536
541
.
9.
Brown
,
T. D.
, and
DiGioia
,
A. M.
, III
, 1984, “
A Contact-Coupled Finite Element Analysis of the Natural Adult Hip
,”
J. Biomech.
0021-9290,
17
, pp.
437
448
.
10.
Brown
,
T. D.
, and
Shaw
,
D. T.
, 1983, “
In Vitro Contact Stress Distributions in the Natural Human Hip
,”
J. Biomech.
0021-9290,
16
, pp.
373
384
.
11.
Hodge
,
W. A.
,
Fijan
,
R. S.
,
Carlson
,
K. L.
,
Burgess
,
R. G.
,
Harris
,
W. H.
, and
Mann
,
R. W.
, 1986, “
Contact Pressures in the Human Hip Joint Measured In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
, pp.
2879
2883
.
12.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
, 1994, “
Cartilage Stresses in the Human Hip Joint
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
10
18
.
13.
von Eisenhart-Rothe
,
R.
,
Eckstein
,
F.
,
Muller-Gerbl
,
M.
,
Landgraf
,
J.
,
Rock
,
C.
, and
Putz
,
R.
, 1997, “
Direct Comparison of Contact Areas, Contact Stress and Subchondral Mineralization in Human Hip Joint Specimens
,”
Anat. Embryol.
0340-2061,
195
, pp.
279
288
.
14.
von Eisenhart-Rothe
,
R. A. C.
,
Steinlechner
,
M.
,
Muller-Gerbl
,
M.
, and
Eckstein
,
F.
, 1999, “
Quantitative Determination of Joint Incongruity and Pressure Distribution During Simulated Gait and Cartilage Thickness in the Human Hip Joint
,”
J. Orthop. Res.
0736-0266,
7
, pp.
532
539
.
15.
Bergmann
,
G.
, 1998,
Hip98: Data Collection of Hip Joint Loading on CD-Rom
,
Free University and Humboldt University
,
Berlin
.
16.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
17.
Carlson
,
C. E.
,
Mann
,
R. W.
, and
Harris
,
W. H.
, 1974, “
A Radio Telemetry Device for Monitoring Cartilage Surface Pressures in the Human Hip
,”
IEEE Trans. Biomed. Eng.
0018-9294,
21
, pp.
257
264
.
18.
Genda
,
E.
,
Iwasaki
,
N.
,
Li
,
G.
,
MacWilliams
,
B. A.
,
Barrance
,
P. J.
, and
Chao
,
E. Y.
, 2001, “
Normal Hip Joint Contact Pressure Distribution in Single-Leg Standing—Effect of Gender and Anatomic Parameters
,”
J. Biomech.
0021-9290,
34
, pp.
895
905
.
19.
Genda
,
E.
,
Konishi
,
N.
,
Hasegawa
,
Y.
, and
Miura
,
T.
, 1995, “
A Computer Simulation Study of Normal and Abnormal Hip Joint Contact Pressure
,”
Arch. Orthop. Trauma Surg.
0344-8444,
114
, pp.
202
206
.
20.
Yoshida
,
H.
,
Faust
,
A.
,
Wilckens
,
J.
,
Kitagawa
,
M.
,
Fetto
,
J.
, and
Chao
,
E. Y.
, 2006, “
Three-Dimensional Dynamic Hip Contact Area and Pressure Distribution During Activities of Daily Living
,”
J. Biomech.
0021-9290,
39
, pp.
1996
2004
.
21.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
, 1985, “
Contact Finite Element Stress Analysis of the Hip Joint
,”
J. Orthop. Res.
0736-0266,
3
, pp.
435
446
.
22.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
, pp.
171
184
.
23.
Tönnis
,
D.
, 1987,
Congenital Dysplasia and Dislocation of the Hip in Children and Adults
,
Springer-Verlag
,
Berlin
.
24.
Fischer
,
K. J.
,
Manson
,
T. T.
,
Pfaeffle
,
H. J.
,
Tomaino
,
M. M.
, and
Woo
,
S. L.
, 2001, “
A Method for Measuring Joint Kinematics Designed for Accurate Registration of Kinematic Data to Models Constructed From Ct Data
,”
J. Biomech.
0021-9290,
34
, pp.
377
383
.
25.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
364
373
.
26.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
, 1993, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
0021-9290,
26
, pp.
523
535
.
27.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
, 2008, “
Cartilage Thickness: Factors Influencing Multidetector CT Measurements in a Phantom Study
,”
Radiology
0033-8419,
246
, pp.
133
141
.
28.
Lujan
,
T. J.
,
Lake
,
S. P.
,
Plaizier
,
T. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2005, “
Simultaneous Measurement of Three-Dimensional Joint Kinematics and Ligament Strains With Optical Methods
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
193
197
.
29.
Liggins
,
A. B.
, 1997, “
The Practical Application of Fuji Prescale Pressure-Sensitive Film
,”
Optical Measurement Methods in Biomechanics
,
Chapman and Hall
,
London
.
30.
Sparks
,
D. R.
,
Beason
,
D. P.
,
Etheridge
,
B. S.
,
Alonso
,
J. E.
, and
Eberhardt
,
A. W.
, 2005, “
Contact Pressures in the Flexed Hip Joint During Lateral Trochanteric Loading
,”
J. Orthop. Res.
0736-0266,
23
, pp.
359
366
.
31.
Lorensen
,
W. E.
, and
Cline
,
H. E.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graph.
0097-8930,
21
, pp.
163
169
.
32.
Hughes
,
T. J.
, 1980, “
Generalization of Selective Integration Procedures to Anisotopic and Nonlinear Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1413
1418
.
33.
Hughes
,
T. J.
, and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part I. Two Dimensional Shells.
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
27
, pp.
167
181
.
34.
Hughes
,
T. J.
, and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part II. Three Dimensional Shells.
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
27
, pp.
331
362
.
35.
Buchler
,
P.
,
Ramaniraka
,
N. A.
,
Rakotomanana
,
L. R.
,
Iannotti
,
J. P.
, and
Farron
,
A.
, 2002, “
A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
17
, pp.
630
639
.
36.
Park
,
S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Mechanical Response of Bovine Articular Cartilage Under Dynamic Unconfined Compression Loading at Physiological Stress Levels
,”
Osteoarthritis Cartilage
1063-4584,
12
, pp.
65
73
.
37.
Hestenes
,
M. R.
, 1969, “
Multiplier and Gradient Methods
,”
J. Optim. Theory Appl.
0022-3239,
4
, pp.
303
320
.
38.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
272
278
.
39.
Zannoni
,
C.
,
Mantovani
,
R.
, and
Viceconti
,
M.
, 1998, “
Material Properties Assignment to Finite Element Models of Bone Structures: A New Method
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
735
740
.
40.
Puso
,
M. A.
, 2004, “
A 3D Mortar Method for Solid Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
315
336
.
41.
Puso
,
M. A.
, and
Laursen
,
T. A.
, 2004, “
A Mortar Segment-to-Segment Contact Method for Large Deformation Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
601
629
.
42.
Maker
,
B. N.
,
Ferencz
,
R. M.
, and
Hallquist
,
J. O.
, 1990, “
Nike3D: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics
,” Lawrence Livermore National Laboratory Technical Report, UCRL-MA.
43.
Athanasiou
,
K. A.
,
Agarwal
,
A.
, and
Dzida
,
F. J.
, 1994, “
Comparative Study of the Intrinsic Mechanical Properties of the Human Acetabular and Femoral Head Cartilage
,”
J. Orthop. Res.
0736-0266,
12
, pp.
340
349
.
44.
Ferguson
,
S. J.
,
Bryant
,
J. T.
,
Ganz
,
R.
, and
Ito
,
K.
, 2000, “
The Influence of the Acetabular Labrum on Hip Joint Cartilage Consolidation: A Poroelastic Finite Element Model
,”
J. Biomech.
0021-9290,
33
, pp.
953
960
.
45.
Ruan
,
J. S.
,
El-Jawahri
,
R.
,
Rouhana
,
S. W.
,
Barbat
,
S.
, and
Prasad
,
P.
, 2006, “
Analysis and Evaluation of the Biofidelity of the Human Body Finite Element Model in Lateral Impact Simulations According to Iso-Tr9790 Procedures
,”
Stapp Car Crash J.
,
50
, pp.
491
507
.
46.
Konishi
,
N.
, and
Mieno
,
T.
, 1993, “
Determination of Acetabular Coverage of the Femoral Head With Use of a Single Anteroposterior Radiograph. A New Computerized Technique
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
, pp.
1318
1333
.
47.
Rushfeldt
,
P. D.
,
Mann
,
R. W.
, and
Harris
,
W. H.
, 1981, “
Improved Techniques for Measuring In Vitro the Geometry and Pressure Distribution in the Human Acetabulum—I. Ultrasonic Measurement of Acetabular Surfaces, Sphericity and Cartilage Thickness
,”
J. Biomech.
0021-9290,
14
, pp.
253
260
.
48.
Shepherd
,
D. E.
, and
Seedhom
,
B. B.
, 1999, “
Thickness of Human Articular Cartilage in Joints of the Lower Limb
,”
Ann. Rheum. Dis.
0003-4967,
58
, pp.
27
34
.
49.
Brown
,
T. D.
,
Anderson
,
D. D.
,
Nepola
,
J. V.
,
Singerman
,
R. J.
,
Pedersen
,
D. R.
, and
Brand
,
R. A.
, 1988, “
Contact Stress Aberrations Following Imprecise Reduction of Simple Tibial Plateau Fractures
,”
J. Orthop. Res.
0736-0266,
6
, pp.
851
862
.
50.
Lorenz
,
M.
,
Patwardhan
,
A.
, and
Vanderby
,
R.
, Jr., 1983, “
Load-Bearing Characteristics of Lumbar Facets in Normal and Surgically Altered Spinal Segments
,”
Spine
0362-2436,
8
, pp.
122
130
.
51.
Hale
,
J. E.
, and
Brown
,
T. D.
, 1992, “
Contact Stress Gradient Detection Limits of Pressensor Film
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
352
357
.
52.
Brown
,
T. D.
,
Rudert
,
M. J.
, and
Grosland
,
N. M.
, 2004, “
New Methods for Assessing Cartilage Contact Stress After Articular Fracture
,”
Clin. Orthop. Relat. Res.
0009-921X,
423
, pp.
52
58
.
53.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
, 1994, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
0021-9290,
27
, pp.
1347
1360
.
54.
Ferguson
,
S. J.
,
Bryant
,
J. T.
,
Ganz
,
R.
, and
Ito
,
K.
, 2003, “
An In Vitro Investigation of the Acetabular Labral Seal in Hip Joint Mechanics
,”
J. Biomech.
0021-9290,
36
, pp.
171
178
.
55.
Konrath
,
G. A.
,
Hamel
,
A. J.
,
Olson
,
S. A.
,
Bay
,
B.
, and
Sharkey
,
N. A.
, 1998, “
The Role of the Acetabular Labrum and the Transverse Acetabular Ligament in Load Transmission in the Hip
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
80
, pp.
1781
1788
.
56.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
ARMStrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
57.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
405
412
.
58.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
, 2001, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
1063-4584,
9
, pp.
561
569
.
59.
Shepherd
,
D. E.
, and
Seedhom
,
B. B.
, 1999, “
The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb
,”
Rheumatology
0080-2727,
38
, pp.
124
132
.
60.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
, pp.
1251
1261
.
61.
Rushfeldt
,
P. D.
,
Mann
,
R. W.
, and
Harris
,
W. H.
, 1981, “
Improved Techniques for Measuring In Vitro the Geometry and Pressure Distribution in the Human Acetabulum. II. Instrumented Endoprosthesis Measurement of Articular Surface Pressure Distribution
,”
J. Biomech.
0021-9290,
14
, pp.
315
323
.
62.
Adams
,
D.
, and
Swanson
,
S. A.
, 1985, “
Direct Measurement of Local Pressures in the Cadaveric Human Hip Joint During Simulated Level Walking
,”
Ann. Rheum. Dis.
0003-4967,
44
, pp.
658
666
.
You do not currently have access to this content.