The closing behavior of mechanical heart valves is dependent on the design of the valve and its housing, the valve composition, and the environment in which the valve is placed. One innovative approach for improving the closure dynamics of tilting disk valves is introduced here. We transformed a normal Delrin occluder into one containing a ”dynamic liquid core” to resist acceleration and reduce the moment of inertia, closing velocity, and impact forces of the valve during closure. The modified occluder was studied in the mitral position of a simulation chamber under the physiologic and elevated closing conditions of 2500mmHg/s and 4500mmHg/s, respectively. Cavitation energy, detected as high-frequency pressure transients with a hydrophone, was the measure used to compare the modified valve with its unaltered counterpart. The cavitation potential of tilting disk valves is indicative of the extent of blood damage occurring during valve closure. Initial findings suggest that changes to the structure or physical properties of well established mechanical valves, such as the one described here, can reduce closure induced hemolysis by minimizing cavitation. Compared with a normal valve, the cavitation intensity associated with our modified valve was reduced by more than 66% at the higher load. Furthermore, the modified valve took longer to completely close than did the standard tilting disk valve, indicating a dampened impact and rebound of the occluder with its housing.

1.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
, 1993, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
,
39
(
3
), pp.
M626
M633
. 1058-2916
2.
Young
,
R. F.
, 1989,
Cavitation
,
McGraw-Hill
,
London
.
3.
Johansen
,
P.
, 2004, “Mechanical Heart Valve Cavitation,” Expert Review of Medical Devices, 1(1), pp. 95–104. 1743-4440
4.
Kafesjian
,
R.
,
Howanec
,
M.
,
Ward
,
G. D.
,
Diep
,
L.
,
Wagstaff
,
L. S.
, and
Rhee
,
R.
, 1994, “
Cavitation Damage of Pyrolytic Carbon in Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
3
(
1
), pp.
52
57
. 0966-8519
5.
Paulsen
,
P. K.
,
Jensen
,
B. K.
,
Hasenkam
,
J. M.
, and
Nygaard
,
H.
, 1999, “
High-Frequency Pressure Fluctuations Measured in Heart Valve Patients
,”
J. Heart Valve Dis.
,
8
(
5
), pp.
482
486
. 0966-8519
6.
Andersen
,
T. S.
,
Johansen
,
P.
,
Paulsen
,
P. K.
,
Nygaard
,
H.
, and
Hasenkam
,
J. M.
, 2003, “
Indication of Cavitation in Mechanical Heart Valve Patients
,”
J. Heart Valve Dis.
,
12
(
6
), pp.
790
796
. 0966-8519
7.
Garrison
,
L. A.
,
Lamson
,
T. C.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
,
Gaumond
,
R. P.
, and
Tarbell
,
J. M.
, 1994, “
An in vitro Investigation of Prosthetic Heart Valve Cavitation in Blood
,”
J. Heart Valve Dis.
,
3
(
1
), pp.
S8
S24
. 0966-8519
8.
Chandran
,
K. B.
,
Dexter
,
E. U.
,
Aluri
,
S.
, and
Richenbacher
,
W. E.
, 1998, “
Negative Pressure Transients With Mechanical Heart Valve Closure: Correlation Between In Vitro and In Vivo Results
,”
Ann. Biomed. Eng.
0090-6964,
26
(
4
), pp.
546
556
.
9.
Sohn
,
K.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2005, “
Acoustic and Visual Characteristics of Cavitation Induced by Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
14
(
4
), pp.
551
558
. 0966-8519
10.
Wu
,
Z. J.
,
Wang
,
Y.
, and
Hwang
,
N. H.
, 1994, “
Occluder Closing Behavior: A Key Factor in Mechanical Heart Valve Cavitation
,”
J. Heart Valve Dis.
,
3
(
1
), pp.
S25
534
. 0966-8519
11.
Chandran
,
K. B.
,
Lee
,
C. S.
, and
Chen
,
L. D.
, 1994, “
Pressure Field in the Vicinity of Mechanical Valve Occluders at the Instant of Valve Closure: Correlation With Cavitation Initiation
,”
J. Heart Valve Dis.
,
3
(
1
), pp.
S65
576
. 0966-8519
12.
Wu
,
Z. J.
, and
Hwang
,
N. H. C.
, 1996, “
Transient Pressure Signals as a Means in Measuring Mechanical Heart Valve Cavitation Potential
,”
Ann. Biomed. Eng.
,
24
(
1
), p.
S
-
2
. 0090-6964
13.
Zapanta
,
C. M.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1998, “
A Comparison of the Cavitation Potential of Prosthetic Heart Valves Based on Valve Closing Dynamics
,”
J. Heart Valve Dis.
,
7
(
6
), pp.
655
667
. 0966-8519
14.
Bachmann
,
C.
, 2000, “
An Experimental Investigation Into the Fluid Mechanics at the Instant of Valve Closure
,” M.S. thesis, Pennsylvania State University, University Park.
15.
Phillips
,
W. M.
,
Snyder
,
A.
,
Alchas
,
P.
,
Rosenberg
,
G.
, and
Pierce
,
W. S.
, 1980, “
Pulsatile Prosthetic Valve Flows
,”
ASAIO Trans.
,
26
, pp.
43
49
. 0889-7190
16.
Bachmann
,
C.
,
Kini
,
V.
,
Deutsch
,
S.
,
Fontaine
,
A.
, and
Tarbell
,
J. M.
, 2002, “
Mechanisms of Cavitation and the Formation of Stable Bubbles on the Bjork-Shiley Monostrut Prosthetic Heart Valve
,”
J. Heart Valve Dis.
,
11
(
1
), pp.
105
113
. 0966-8519
17.
Sneckenberger
,
D. S.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1996, “
Mitral Heart Valve Cavitation in an Artificial Heart Environment
,”
J. Heart Valve Dis.
,
5
(
2
), pp.
216
227
. 0966-8519
18.
Teoh
,
S. H.
,
Martin
,
R. L.
,
Lim
,
S. C.
,
Lee
,
K. H.
,
Mok
,
C. K.
, and
Kwok
,
W. C.
, 1990, “
Delrin as an Occluder Material
,”
ASAIO Trans.
,
36
(
3
), pp.
M417
421
. 0889-7190
19.
Bachmann
,
C.
,
Wilson
,
M.
,
Kini
,
V.
,
Deutsch
,
S.
,
Fontaine
,
A. A.
, and
Tarbell
,
J. M.
, 2000, “
The Osmotic Swelling Characteristics of Cardiac Valve Prostheses
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
453
454
.
20.
Herman
,
B. A.
, and
Carey
,
R. F.
, 1994, “
A Protocol for the Evaluation of the Cavitation Potential of Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
3
(
1
), pp.
S128
132
. 0966-8519
21.
Herbertson
,
L. H.
,
Manning
,
K. B.
,
Reddy
,
V.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2005, “
The Effect of Dissolved Carbon Dioxide on Cavitation Intensity in Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
14
(
6
), pp.
835
842
. 0966-8519
22.
Herbertson
,
L. H.
,
Reddy
,
V.
,
Manning
,
K. B.
,
Welz
,
J. P.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2006, “
Wavelet Transforms in the Analysis of Mechanical Heart Valve Cavitation
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
2
), pp.
217
222
.
You do not currently have access to this content.