There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA anatomy indicating the feasibility of this approach.

1.
Kleinstreuer
,
C.
, and
Li
,
Z.
, 2006, “
Analysis and Computer Program for Rupture-Risk Prediction of Abdominal Aortic Aneurysms
,”
Biomed. Eng. Online
1475-925X,
5
:19.
2.
Kleinstreuer
,
C.
,
Hyun
,
S.
,
Buchanan
,
J. R.
,
Longest
,
P. W.
,
Archie
,
J. P.
, and
Truskey
,
G. A.
, 2001, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
1
), pp.
1
64
.
3.
Thubrikar
,
M. J.
,
Al-Soudi
,
J.
, and
Robicsek
,
F.
, 2001, “
Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model
,”
Ann. Vasc. Surg.
0890-5096,
15
(
3
), pp.
355
366
.
4.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4
), pp.
588
594
.
5.
Bonert
,
M.
,
Leask
,
R. L.
,
Butany
,
J.
,
Ethier
,
C. R.
,
Myers
,
J. G.
,
Johnston
,
K. W.
, and
Ojha
,
M.
, 2003, “
The Relationship Between Wall Shear Stress Distributions and Intimal Thickening in the Human Abdominal Aorta
,”
Biomed. Eng. Online
1475-925X,
2
:18.
6.
Lee
,
D.
, and
Chen
,
J. Y.
, 2002, “
Numerical Simulation of Steady Flow Fields in a Model of Abdominal Aorta With Its Peripheral Branches
,”
J. Biomech.
0021-9290,
35
(
8
), pp.
1115
1122
.
7.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
0090-6964,
26
(
6
), pp.
975
987
.
8.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1999, “
Effect of Exercise on Hemodynamic Conditions in the Abdominal Aorta
,”
J. Vasc. Surg.
0741-5214,
29
(
6
), pp.
1077
1089
.
9.
Ku
,
D. N.
,
Glagov
,
S.
,
Moore
,
J. E.
, and
Zarins
,
C. K.
, 1989, “
Flow Patterns in the Abdominal-Aorta Under Simulated Postprandial and Exercise Conditions—An Experimental-Study
,”
J. Vasc. Surg.
0741-5214,
9
(
2
), pp.
309
316
.
10.
Moore
,
J. E.
,
Ku
,
D. N.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1992, “
Pulsatile Flow Visualization in the Abdominal-Aorta Under Differing Physiological Conditions-Implications for Increased Susceptibility to Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
3
), pp.
391
397
.
11.
Pedersen
,
E. M.
,
Yoganathan
,
A. P.
, and
Lefebvre
,
X. P.
, 1992, “
Pulsatile Flow Visualization in a Model of the Human Abdominal-Aorta and Aortic Bifurcation
,”
J. Biomech.
0021-9290,
25
(
8
), pp.
935
944
.
12.
Pedersen
,
E. M.
,
Sung
,
H. W.
,
Burlson
,
A. C.
, and
Yoganathan
,
A. P.
, 1993, “
2-Dimensional Velocity-Measurements in a Pulsatile Flow Model of the Normal Abdominal-Aorta Simulating Different Hemodynamic Conditions
,”
J. Biomech.
0021-9290,
26
, pp.
1237
1247
.
13.
Boesiger
,
P.
,
Maier
,
S. E.
,
Liu
,
K. C.
,
Scheidegger
,
M. B.
, and
Meier
,
D.
, 1992, “
Visualization and Quantification of the Human Blood-Flow by Magnetic-Resonance-Imaging
,”
J. Biomech.
0021-9290,
25
(
1
), pp.
55
67
.
14.
Moore
,
J. E.
, and
Ku
,
D. N.
, 1994, “
Pulsatile Velocity-Measurements in a Model of the Human Abdominal-Aorta Under Resting Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
3
), pp.
337
346
.
15.
Moore
,
J. E.
, and
Ku
,
D. N.
, 1994, “
Pulsatile Velocity-Measurements in a Model of the Human Abdominal-Aorta Under Simulated Exercise and Postprandial Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
107
111
.
16.
Moore
,
J. E.
,
Maier
,
S. E.
,
Ku
,
D. N.
, and
Boesiger
,
P.
, 1994, “
Hemodynamics in the Abdominal-Aorta—A Comparison of In-Vitro and In-Vivo Measurements
,”
J. Appl. Physiol.
8750-7587,
76
(
4
), pp.
1520
1527
.
17.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
, 1994, “
3-Dimensional Simulation of Blood-Flow in an Abdominal Aortic-Aneurysm—Steady and Unsteady-Flow Cases
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
89
97
.
18.
Finol
,
E. A.
, and
Amon
,
C. H.
, 2001, “
Blood Flow in Abdominal Aortic Aneurysms: Pulsatile Flow Hemodynamics
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
474
484
.
19.
Finol
,
E. A.
,
Keyhani
,
K.
, and
Amon
,
C. H.
, 2003, “
The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
207
217
.
20.
Kumar
,
B. V. R.
, 2003, “
A Space-Time Analysis of Blood Flow in a 3D Vessel With Multiple Aneurysms
,”
Comput. Mech.
0178-7675,
32
(
1–2
), pp.
16
28
.
21.
Fukushima
,
T.
,
Matsuzawa
,
T.
, and
Homma
,
T.
, 1989, “
Visualization and Finite-Element Analysis of Pulsatile Flow in Models of the Abdominal Aortic-Aneurysm
,”
Biorheology
0006-355X,
26
(
2
), pp.
109
130
.
22.
Asbury
,
C. L.
,
Ruberti
,
J. W.
,
Bluth
,
E. I.
, and
Peattie
,
R. A.
, 1995, “
Experimental Investigation of Steady Flow in Rigid Models of Abdominal Aortic-Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
23
(
1
), pp.
29
39
.
23.
Egelhoff
,
C. J.
,
Budwig
,
R. S.
,
Elger
,
D. F.
,
Khraishi
,
T. A.
, and
Johansen
,
K. H.
, 1999, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
0021-9290,
32
(
12
), pp.
1319
1329
.
24.
Peattie
,
R. A.
,
Riehle
,
T. J.
, and
Bluth
,
E. I.
, 2004, “
Pulsatile Flow in Fusiform Models of Abdominal Aortic Aneurysms: Flow Fields, Velocity Patterns and Flow-Induced Wall Stresses
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
4
), pp.
438
446
.
25.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1996, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
3
), pp.
280
286
.
26.
Yu
,
S. C. M.
,
Chan
,
W. K.
,
Ng
,
B. T. H.
, and
Chua
,
L. P.
, 1999, “
A Numerical Investigation on the Steady and Pulsatile Flow Characteristics in Axi-Symmetric Abdominal Aortic Aneurysm Models With Some Experimental Evaluation
,”
J. Med. Eng. Technol.
0309-1902,
23
(
6
), pp.
228
239
.
27.
Boutsianis
,
E.
,
Frauenfelder
,
T.
,
Wildermuth
,
S.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Anatomically Accurate Haemodynamic Simulations of Abdominal Aortic Aneurysms
,”
2003 Advances in Bioengineering
,
Washington, DC
, paper No. IMECE2003-42766, pp.
61
62
.
28.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
, 2002, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
36
(
3
), pp.
589
597
.
29.
Scotti
,
C. M.
, and
Finol
,
E. A.
, 2007, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid-Structure Interaction Study
,”
Comput. Struct.
0045-7949,
85
(
11–14
), pp.
1097
1113
.
30.
Wolters
,
B. J. B. M.
,
Rutten
,
M. C. M.
,
Schurink
,
G. W. H.
,
Kose
,
U.
,
De Hart
,
J.
, and
Van De Vosse
,
F. N.
, 2005, “
A Patient-Specific Computational Model of Fluid-Structure Interaction in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
1350-4533,
27
(
10
), pp.
871
883
.
31.
Maas
,
H. G.
,
Gruen
,
A.
, and
Papantoniou
,
D.
, 1993, “
Particle Tracking Velocimetry in 3-Dimensional Flows.1. Photogrammetric Determination of Particle Coordinates
,”
Exp. Fluids
0723-4864,
15
(
2
), pp.
133
146
.
32.
Malik
,
N. A.
,
Dracos
,
T.
, and
Papantoniou
,
D. A.
, 1993, “
Particle Tracking Velocimetry in 3-Dimensional Flows. 2. Particle Tracking
,”
Exp. Fluids
0723-4864,
15
(
4–5
), pp.
279
294
.
33.
Virant
,
M.
, and
Dracos
,
T.
, 1997, “
3d Ptv and Its Application on Lagrangian Motion
,”
Meas. Sci. Technol.
0957-0233,
8
(
12
), pp.
1539
1552
.
34.
Luthi
,
B.
,
Tsinober
,
A.
, and
Kinzelbach
,
W.
, 2005, “
Lagrangian Measurement of Vorticity Dynamics in Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
528
, pp.
87
118
.
35.
Kieft
,
R. N.
,
Schreel
,
K. R. A. M.
,
Van Der Plas
,
G. A. J.
, and
Rindt
,
C. C. M.
, 2002, “
The Application of a 3d Ptv Algorithm to a Mixed Convection Flow
,”
Exp. Fluids
0723-4864,
33
(
4
), pp.
603
611
.
36.
Hoyer
,
K.
,
Holzner
,
M.
,
Luthi
,
B.
,
Guala
,
M.
,
Liberzon
,
A.
, and
Kinzelbach
,
W.
, 2005, “
3d Scanning Particle Tracking Velocimetry
,”
Exp. Fluids
0723-4864,
39
(
5
), pp.
923
934
.
37.
Mathys
,
R.
, and
Zurflueh
,
P.
, 2004, “
Experimental Measurements of the Velocity Field Within an Anatomically Realistic Abdominal Aortic Aneurysm
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.
38.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
29–32
), pp.
3776
3796
.
39.
Sahni
,
O.
,
Muller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
, 2006, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
41–43
), pp.
5634
5655
.
40.
Vorp
,
D. A.
, 2007, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
(
9
), pp.
1887
1902
.
41.
Li
,
Z. H.
, and
Kleinstreuer
,
C.
, 2005, “
Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
1350-4533,
27
(
5
), pp.
369
382
.
42.
Chong
,
C. K.
, and
How
,
T. V.
, 2004, “
Flow Patterns in an Endovascular Stent-Graft for Abdominal Aortic Aneurysm Repair
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
89
97
.
You do not currently have access to this content.