Abstract

Arteries adapt to their mechanical environment by undergoing remodeling of the structural scaffold via the action of matrix metalloproteinases (MMPs). Cell culture studies have shown that stretching vascular smooth muscle cells (VSMCs) positively correlates to the production of MMP-2 and -9. In tissue level studies, the expressions and activations of MMP-2 and -9 are generally higher in the outer media. However, homogeneous mechanical models of arteries predict lower stress and strain in the outer media, which appear inconsistent with experimental findings. The effects of heterogeneity may be important to our understanding of VSMC function since arteries exhibit structural heterogeneity across the wall. We hypothesized that local stresses, computed using a heterogeneous mechanical model of arteries, positively correlate to the levels of MMP-2 and -9 in situ. We developed a model of the arterial wall accounting for nonlinearity, residual strain, anisotropy, and structural heterogeneity. The distributions of elastin and collagen fibers in situ, measured in the media of porcine carotid arteries, showed significant nonuniformities. Anisotropy was represented by the direction of collagen fibers measured by the helical angle of VSMC nuclei. The points at which the collagen fibers became load bearing were computed, assuming a uniform fiber strain and orientation under physiological loading conditions, an assumption motivated by morphological measurements. The distributions of circumferential stresses, computed using both heterogeneous and homogeneous models, were correlated to the distributions of expressions and activations of MMP-2 and -9 in porcine common carotid arteries incubated in an ex vivo perfusion organ culture system under physiological conditions for 48h. While strains computed using incompressibility were identical in both models, the heterogeneous model, unlike the homogeneous model, predicted higher circumferential stresses in the outer layer correlated to the expressions and activations of MMP-2 and -9. This implies that localized remodeling occurs in the areas of high stress and agrees with results from cell culture studies. The results support the role of mechanical stress in vascular remodeling and the importance of structural heterogeneity in understanding mechanobiological responses.

References

1.
Fung
,
Y. C.
, 1965,
Foundations of Solid Mechanics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Humphrey
,
J. D.
, 1995, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
0278-940X,
23
(
1–2
), pp.
1
162
.
3.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models—1995–2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
413
439
.
4.
Brossollet
,
L. J.
, and
Vito
,
R. P.
, 1996, “
A New Approach to Mechanical Testing and Modeling of Biological Tissues, With Application to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
433
439
.
5.
von Maltzahn
,
W. W.
,
Besdo
,
D.
, and
Wiemer
,
W.
, 1981, “
Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model
,”
J. Biomech.
0021-9290,
14
(
6
), pp.
389
397
.
6.
von Maltzahn
,
W. W.
,
Warriyar
,
R. G.
, and
Keitzer
,
W. F.
, 1984, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
0021-9290,
17
(
11
), pp.
839
847
.
7.
Rachev
,
A.
, 1997, “
Theoretical Study of the Effect of Stress-Dependent Remodeling on Arterial Geometry under Hypertensive Conditions
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
819
827
.
8.
Holzapfel
,
G. A.
, and
Weizsäcker
,
H. W.
, 1998, “
Biomechanical Behavior of the Arterial Wall and Its Numerical Characterization
,”
Comput. Biol. Med.
0010-4825,
28
, pp.
377
392
.
9.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
441
463
.
10.
Wuyts
,
F. L.
,
Vanhuyse
,
V. J.
,
Langewouters
,
G. J.
,
Decraemer
,
W. F.
,
Raman
,
E. R.
, and
Buyle
,
S.
, 1995, “
Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model
,”
Phys. Med. Biol.
0031-9155,
40
(
10
), pp.
1577
1597
.
11.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
, pp.
989
1000
.
12.
Vito
,
R. P.
, and
Hickey
,
J.
, 1980, “
The Mechanical Properties of Soft Tissues-II: The Elastic Response of Arterial Segments
,”
J. Biomech.
0021-9290,
13
, pp.
951
957
.
13.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
268
274
.
14.
Vorp
,
D. A.
,
Rajagopal
,
K. R.
,
Smolinski
,
P. J.
, and
Borovetz
,
H. S.
, 1995, “
Identification of Elastic Properties of Homogeneous, Orthotropic Vascular Segments in Distension
,”
J. Biomech.
0021-9290,
28
(
5
), pp.
501
512
.
15.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
189
192
.
16.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1996, “
Stress and Strain Distribution in Hypertensive and Normotensive Rat Aorta Considering Residual Strain
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
62
73
.
17.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J.-J.
, 1996, “
Theoretical Study of Dynamics of Arterial Wall Remodeling in Response to Changes in Blood Pressure
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
635
642
.
18.
Chaudhry
,
H. R.
,
Bukiet
,
B.
,
Davis
,
A.
,
Ritter
,
A. B.
, and
Findley
,
T.
, 1997, “
Residual Stresses in Oscillating Thoracic Arteries Reduce Circumferential Stresses and Stress Gradients
,”
J. Biomech.
0021-9290,
30
(
1
), pp.
57
62
.
19.
Peterson
,
S. J.
, and
Okamoto
,
R. J.
, 2000, “
Effect of Residual Stress and Heterogeneity on Circumferential Stress in the Arterial Wall
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
454
456
.
20.
Vito
,
R. P.
,
Whang
,
M. C.
,
Glagov
,
S.
, and
Aoki
,
T.
, 1991, “
The Distribution of Strains and Stresses in the Arterial Cross Section
,”
Proceedings of the 1991 ASME Winter Annual Meeting
,
Atlanta
,
GA
.
21.
Greenwald
,
S. E.
,
Moore
,
J. E.
,
Rachev
,
A.
,
Kane
,
T. P. C.
, and
Meister
,
J.-J.
, 1997, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
438
444
.
22.
Matsumoto
,
T.
,
Goto
,
T.
, and
Sato
,
M.
, 2002, “
Residual Stress and Strain in the Lamellar Unit of the Aorta: Experiment and Analysis
,”
Proceedings of the Fouth World Congress Biomechanics
,
Calgary
,
Canada
.
23.
Feldman
,
S. A.
, and
Glagov
,
S.
, 1971, “
Transmedial Collagen and Elastin Gradients in Human Aortas: Reversal With Age
,”
Atherosclerosis
0021-9150,
13
, pp.
385
394
.
24.
Hasan
,
N.
, and
Greenwald
,
S. E.
, 1995, “
Variation in the Concentration of Scleroproteins across the Arterial Wall
,”
J. Pathol.
0022-3417,
176
(Suppl.), p.
26A
.
25.
Merrilees
,
M. J.
,
Tiang
,
K. M.
, and
Scott
,
L.
, 1987, “
Changes in Collagen Fibril Diameters Across Artery Walls Including a Correlation With Glycosaminoglycan Content
,”
Connect. Tissue Res.
0300-8207,
16
, pp.
237
257
.
26.
Taber
,
L. A.
, and
Humphrey
,
J. D.
, 2001, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
528
535
.
27.
Dollery
,
C. M.
,
McEwan
,
J. R.
, and
Henney
,
A. M.
, 1995, “
Matrix Metalloproteinases and Cardiovascular Disease
,”
Circ. Res.
0009-7330,
77
(
5
), pp.
863
868
.
28.
Johnson
,
C.
, and
Galis
,
Z. S.
, 2004, “
Matrix Metalloproteinase-2 and -9 Differentially Regulate Smooth Muscle Cell Migration and Cell-Mediated Collagen Organization
,”
Arterioscler. Thromb.
,
24
, pp.
54
60
.
29.
Defawe
,
O. D.
,
Kenagy
,
R. D.
,
Choi
,
C.
,
Wan
,
S. Y. C.
,
Deroanne
,
C.
,
Nusgens
,
B.
,
Sakalihasan
,
N.
,
Colige
,
A.
, and
Clowes
,
A. W.
, 2005, “
MMP-9 Regulates Both Positively and Negatively Collagen Gel Contraction: A Nonproteolytic Function of MMP-9
,”
Cardiovasc. Res.
0008-6363,
66
, pp.
402
409
.
30.
Asanuma
,
K.
,
Magid
,
R.
,
Johnson
,
C.
,
Nerem
,
R. M.
, and
Galis
,
Z. S.
, 2003, “
Uniaxial Strain Upregulates Matrix-Degrading Enzymes Produced by Human Vascular Smooth Muscle Cells
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
284
, pp.
H1778
H1784
.
31.
O’Callaghan
,
C. J.
, and
Williams
,
B.
, 2000, “
Mechanical Strain-Induced Extracellular Matrix Production by Human Vascular Smooth Muscle Cells: Role of TGF-β1
,”
Hypertension
0194-911X,
36
(
3
), pp.
319
324
.
32.
Chesler
,
N. C.
,
Ku
,
D. N.
, and
Galis
,
Z. S.
, 1999, “
Transmural Pressure Induces Matrix-Degrading Activity in Porcine Arteries Ex Vivo
,”
Am. J. Physiol.
0002-9513,
277
(
5
), pp.
H2002
H2009
.
33.
Mavromatis
,
K.
,
Fukai
,
T.
,
Tate
,
M.
,
Chesler
,
N.
,
Ku
,
D. N.
, and
Galis
,
Z. S.
, 2000, “
Early Effects of Arterial Hemodynamic Conditions on Human Saphenous Veins Perfused Ex Vivo
,”
Arterioscler. Thromb.
,
20
, pp.
1889
1895
.
34.
Wilson
,
S. H.
,
Herrmann
,
J.
,
Lerman
,
L. O.
,
Holmes
,
D. R.
,
Napoli
,
C.
,
Ritman
,
E. L.
, and
Lerman
,
A.
, 2002, “
Simvastatin Preserves the Structure of Coronary Adventitial Vasa Vasorum in Experimental Hypercholesterolemia Independent of Lipid Lowering
,”
Circulation
0009-7322,
105
(
5
), pp.
415
418
.
35.
Han
,
H.-C.
, and
Ku
,
D. N.
, 2001, “
Contractile Responses in Arteries Subjected to Hypertensive Pressure in Seven-Day Organ Culture
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
467
475
.
36.
Davis
,
N. P.
,
Han
,
H. C.
,
Wayman
,
B.
, and
Vito
,
R. P.
, 2005, “
Sustained Axial Loading Lengthens Arteries in Organ Culture
,”
Ann. Biomed. Eng.
0090-6964,
33
(
7
), pp.
867
877
.
37.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
38.
Davis
,
N. P.
, 2002, “
Axial Stretch as a Means of Lengthening Arteries: An Investigation in Organ Culture
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
39.
Todd
,
M. E.
,
Laye
,
C. G.
, and
Osborne
,
D. N.
, 1983, “
The Dimensional Characteristics of Smooth Muscle in Rat Blood Vessels: A Computer-Assisted Analysis
,”
Circ. Res.
0009-7330,
53
, pp.
319
331
.
40.
Blomfield
,
J.
, and
Farrar
,
J. F.
, 1967, “
Fluorescence Spectra of Arterial Elastin
,”
Biochem. Biophys. Res. Commun.
0006-291X,
28
(
3
), pp.
346
351
.
41.
Fitzmaurice
,
M.
,
Bordagaray
,
J. O.
,
Engelmann
,
G. L.
,
Richards-Kortum
,
R.
,
Kolubayev
,
T.
,
Feld
,
M. S.
,
Ratliff
,
N. B.
, and
Kramer
,
J. R.
, 1989, “
Argon Ion Laser-Excited Autofluorescence in Normal and Atherosclerotic Aorta and Coronary Arteries: Morphologic Studies
,”
Am. Heart J.
0002-8703,
118
(
5
), pp.
1028
1038
.
42.
Baraga
,
J. J.
,
Rava
,
R. P.
,
Taroni
,
P.
,
Kittrell
,
C.
,
Fitzmaurice
,
M.
, and
Feld
,
M. S.
, 1990, “
Laser Induced Fluorescence Spectroscopy of Normal and Atherosclerotic Human Aorta Using 306–310nm Excitation
,”
Lasers Surg. Med.
0196-8092,
10
(
3
), pp.
245
261
.
43.
Junqueira
,
L. C. U.
,
Bignolas
,
G.
, and
Brentani
,
R. R.
, 1979, “
Picrosirius Staining Plus Polarization Microscopy, A Specific Method for Collagen Detection in Tissue Sections
,”
Histochem. J.
0018-2214,
11
, pp.
447
455
.
44.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Kiernan
,
J. A.
, and
Ferguson
,
G. G.
, 1999, “
Layered Structure of Saccular Aneurysms Assessed by Collagen Birefringence
,”
Neurol. Res.
0161-6412,
21
(
7
), pp.
618
626
.
45.
Junqueira
,
L. C. U.
,
Montes
,
G. S.
, and
Krisztan
,
R. M.
, 1979, “
The Collagen of the Vertebrate Peripheral Nervous System
,”
Cell Tissue Res.
0302-766X,
202
, pp.
453
460
.
46.
Junqueira
,
L. C. U.
,
Montes
,
G. S.
, and
Sanchez
,
E. M.
, 1982, “
The Influence of Tissue Section Thickness on the Study of Collagen by the Picrosirius-Polarization Method
,”
Histochemistry
0301-5564,
74
(
1
), pp.
153
156
.
47.
Ehlers
,
E. G.
, 1987,
Optical Mineralogy: Theory and Technique
,
Blackwell Scientific Publications
,
Palo Alto, CA
, p.
29
.
48.
Whittaker
,
P.
,
Kloner
,
R. A.
,
Boughner
,
D. R.
, and
Pickering
,
J. G.
, 1994, “
Quantitative Assessment of Myocardial Collagen With Picrosirius Red Staining and Circularly Polarized Light
,”
Basic Res. Cardiol.
0300-8428,
89
(
5
), pp.
397
410
.
49.
Szendroi
,
M.
,
Vajta
,
G.
,
Kovacs
,
L.
,
Schaff
,
Z.
, and
Lapis
,
K.
, 1984, “
Polarization Colours of Collagen Fibres: A Sign of Collagen Production Activity in Fibrotic Processes
,”
Acta Morphol. Hung.
0236-5391,
32
(
1
), pp.
47
55
.
50.
Wolman
,
M.
, and
Kasten
,
F. H.
, 1986, “
Polarized Light Microscopy in the Study of the Molecular Structure of Collagen and Reticulin
,”
Histochemistry
0301-5564,
85
(
1
), pp.
41
49
.
51.
Lee
,
R. T.
,
Schoen
,
F. J.
,
Loree
,
H. M.
,
Lark
,
M. W.
, and
Libby
,
P.
, 1996, “
Circumferential Stress and Matrix Metalloproteinase 1 in Human Coronary Atherosclerosis: Implications for Plaque Rupture
,”
Arterioscler. Thromb.
,
16
(
8
), pp.
1070
1073
.
52.
Galis
,
Z. S.
,
Sukhova
,
G. K.
, and
Libby
,
P.
, 1995, “
Microscopic Localization of Active Proteases by In Situ Zymography: Detection of Matrix Metalloproteinase Activity in Vascular Tissue
,”
FASEB J.
0892-6638,
9
(
10
), pp.
974
980
.
53.
Torrance
,
H. B.
, and
Shwatz
,
S.
, 1961, “
The Elastic Behaviour of the Arterial Wall
,”
J. R. Coll. Surg. Edinb
0036-8835.,
7
, pp.
55
60
.
54.
Conklin
,
B. S.
,
Richter
,
E. R.
,
Kreutziger
,
K. L.
,
Zhong
,
D.-S.
, and
Chen
,
C.
, 2002, “
Development and Evaluation of a Novel Decellularized Vascular Xenograft
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
173
183
.
55.
Fung
,
Y. C.
, 1984,
Biodynamics: Circulation
,
Springer-Verlag
,
New York, NY
, pp.
64
65
.
56.
Kim
,
Y.
, 2007, “
Correlation Between MMP-2 and -9 Levels and Local Stresses in Arteries Using a Heterogeneous Mechanical Model
,” Ph. D. thesis, Georgia Institute of Technology, Atlanta, GA.
57.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Whittaker
,
P.
, and
Starkey
,
J.
, 1986, “
The Tunica Muscularis of Human Brain Arteries: Three-Dimensional Measurements of Alignment of the Smooth Muscle Mechanical Axis, by Polarized Light and the Universal Stage
,”
Neurol. Res.
0160-6412,
8
(
2
), pp.
66
74
.
58.
Finlay
,
H. M.
,
Dixon
,
J. G.
, and
Canham
,
P. B.
, 1991, “
Fabric Organization of the Subendothelium of the Human Brain Artery by Polarized-Light Microscopy
,”
Arterioscler., Thromb., Vasc. Biol.
,
11
, pp.
681
690
.
59.
Wilson
,
E.
,
Sudhir
,
K.
, and
Ives
,
H. E.
, 1995, “
Mechanical Strain of Rat Vascular Smooth Muscle Cells is Sensed by Specific Extracellular Matrix/Integrin Interactions
,”
J. Clin. Invest.
0021-9738,
96
(
5
), pp.
2364
2372
.
60.
Koyama
,
H.
,
Raines
,
E. W.
,
Bornfeldt
,
K. E.
,
Roberts
,
J. M.
, and
Ross
,
R.
, 1996, “
Fibrillar Collagen Inhibits Arterial Smooth Muscle Proliferation Through Regulation of Cdk2 Inhibitors
,”
Cell
0092-8674,
87
, pp.
1069
1078
.
61.
Carey
,
D. J.
, 1991, “
Control of Growth and Differentiation of Vascular Cells by Extracellular Matrix Proteins
,”
Annu. Rev. Physiol.
0066-4278,
53
, pp.
161
177
.
62.
Capers
,
Q.
,
Alexander
,
R. W.
,
Lou
,
P.
,
De Leon
,
H.
,
Wilcox
,
J. N.
,
Ishizaka
,
N.
,
Howard
,
A. B.
, and
Taylor
,
W. R.
, 1997, “
Monocyte Chemoattractant Protein-1 Expression in Aortic Tissues of Hypertensive Rats
,”
Hypertension
0194-911X,
30
(
6
), pp.
1397
1402
.
63.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1989, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
0148-0731,
111
, pp.
325
335
.
64.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1994, “
Mechanical and Dimensional Adaptation of Rat Aorta to Hypertension
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
278
283
.
65.
Fridez
,
P.
,
Zulliger
,
M.
,
Bobard
,
F.
,
Montorzi
,
G.
,
Miyazaki
,
H.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2003, “
Geometrical, Functional, and Histomorphometric Adaptation of Rat Carotid Artery in Induced Hypertension
,”
J. Biomech.
0021-9290,
36
, pp.
671
680
.
66.
Xu
,
C.
,
Zarins
,
C. K.
,
Bassiouny
,
H. S.
,
Briggs
,
W. H.
,
Reardon
,
C.
, and
Glagov
,
S.
, 2000, “
Differential Transmural Distribution of Gene Expression for Collagen Types I and III Proximal to Aortic Coarctation in the Rabbit
,”
J. Vasc. Res.
1018-1172,
37
(
3
), pp.
170
182
.
You do not currently have access to this content.