This work deals with the study of the analytical relations between porosity of cancellous bone and its mechanical properties. The Stieltjes representation of the effective shear complex modulus of cancellous bone is exploited to recover porosity. The microstructural information is contained in the spectral measure in this analytical representation. The spectral function can be recovered from the effective measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed. Regularized algorithm is derived to ensure stability of the results. The proposed method does not use any specific assumptions about the microgeometry of bone. The approach does not rely on correlation analysis, it uses analytical relationships. For validation purposes, complex shear modulus over a range of frequencies was calculated by the finite element method using micro-computed tomography (micro-CT) images of human cancellous bone. The calculated values were used in numerical algorithm to recover bone porosity. At the microlevel, bone was modeled as a heterogeneous medium composed of trabeculae tissue and bone marrow treated as transversely isotropic elastic and isotropic viscoelastic materials, respectively. Recovered porosity values are in excellent agreement with true porosity found from the corresponding micro-CT images.

1.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2001, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
0178-7675,
27
(
1
), pp.
37
48
.
2.
Zaoui
,
A.
, 2002, “
Continuum Micromechanics: Survey
,”
J. Eng. Mech.
0733-9399,
128
(
8
), pp.
808
816
.
3.
Hollister
,
S. J.
,
Fyhrie
,
D. P.
,
Jepsen
,
K. J.
, and
Goldstein
,
S. A.
, 1991, “
Application of Homogenization Theory to the Study of Trabecular Bone Mechanics
,”
J. Biomech.
0021-9290,
24
(
9
), pp.
825
839
.
4.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
, 1994, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
433
444
.
5.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2000, “
Impact of the Porous Microstructure on the Overall Elastic Properties of the Osteonal Cortical Bone
,”
J. Biomech.
0021-9290,
33
(
7
), pp.
881
888
.
6.
Bergman
,
D. J.
, 1978, “
The Dielectric Constant of a Composite Material—A Problem in Classical Physics
,”
Phys. Rep. C
0370-1573,
43
(
9
), pp.
377
407
.
7.
Milton
,
G. W.
, 1981, “
Bounds on the Complex Permittivity of a Two-Component Composite Material
,”
J. Appl. Phys.
0021-8979,
52
(
8
), pp.
5286
5293
.
8.
Golden
,
K.
, and
Papanicolaou
,
G.
, 1983, “
Bounds for Effective Parameters of Heterogeneous Media by Analytic Continuation
,”
Commun. Math. Phys.
0010-3616,
90
(
4
), pp.
473
491
.
9.
Kantor
,
Y.
, and
Bergman
,
D. J.
, 1982, “
Elastostatic Resonances—A New Approach to the Calculation of the Effective Elastic Constants of Composites
,”
J. Mech. Phys. Solids
0022-5096,
30
(
5
), pp.
355
376
.
10.
Kantor
,
Y.
, and
Bergman
,
D. J.
, 1984, “
Improved Rigorous Bounds on the Effective Elastic Moduli of a Composite Material
,”
J. Mech. Phys. Solids
0022-5096,
32
(
1
), pp.
41
62
.
11.
Tokarzewski
,
S.
,
Telega
,
J. J.
, and
Galka
,
A.
, 2001, “
Torsional Rigidities of Cancellous Bone Filled With Marrow: The Application of Multipoint Pade Approximants
,”
Eng. Trans.
0035-9408,
49
(
2–3
), pp.
135
153
.
12.
Cherkaev
,
E.
, 2001, “
Inverse Homogenization for Evaluation of Effective Properties of a Mixture
,”
Inverse Probl.
0266-5611,
17
(
4
), pp.
1203
1218
.
13.
Day
,
A. R.
, and
Thorpe
,
M. F.
, 1999, “
The Spectral Function of Composite: The Inverse Problem
,”
J. Phys.: Condens. Matter
0953-8984,
11
, pp.
2551
2568
.
14.
Bergman
,
D. J.
, 1993, “
Hierarchies of Stieltjes Functions and Their Applications to the Calculation of Bounds for the Dielectric Constant of a Two-Component Composite Medium
,”
SIAM J. Appl. Math.
0036-1399,
53
(
4
), pp.
915
930
.
15.
Cherkaeva
,
E.
, and
Golden
,
K. M.
, 1998, “
Inverse Bounds for Microstructural Parameters of a Composite Media Derived From Complex Permittivity Measurements
,”
Waves Random Media
0959-7174,
8
(
4
), pp.
437
450
.
16.
Bonifasi-Lista
,
C.
, and
Cherkaev
,
E.
, 2007, “
Identification of Bone Microstructure From Effective Complex Modulus
,”
Springer Proceedings in Physics, Vibration Problems ICOVP 2005
,
E.
Ínan
and
A.
Kiriş
, eds.,
Springer
,
Netherlands
, Vol.
111
, pp.
91
96
.
17.
Bonifasi-Lista
,
C.
, and
Cherkaev
,
E.
, 2006, “
Analytical Relations Between Effective Material Properties and Microporosity: Application to Bone Mechanics
,”
III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering: Book of Abstracts
,
C. A.
Mota Soares
,
J. A. C.
Martins
,
H. C.
Rodrigues
,
J. A. C.
Ambrosio
,
C. A. B.
Pina
,
C. M.
Mota Soares
,
E. B. R.
Pereira
, and
J.
Folgado
, eds.,
Springer
,
Lisbon, Portugal
.
18.
Bonifasi-Lista
,
C.
, and
Cherkaev
,
E.
, 2008, “
Analytical Relations Between Effective Material Properties and Microporosity: Application to Bone Mechanics
,”
Int. J. Eng. Sci.
0020-7225,
46
(
12
), pp.
1239
1252
.
19.
McPhedran
,
R. C.
,
McKenzie
,
D. R.
, and
Milton
,
G. W.
, 1982, “
Extraction of Structural Information From Measured Transport Properties of Composites
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
29
(
1
), pp.
19
27
.
20.
McPhedran
,
R. C.
, and
Milton
,
G. W.
, 1990, “
Inverse Transport Problems for Composite Media
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
195
, pp.
257
274
.
21.
Tripp
,
A. C.
,
Cherkaeva
,
E.
, and
Hulen
,
J.
, 1998, “
Bounds on the Complex Conductivity of Geophysical Mixtures
,”
Geophys. Prospect.
0016-8025,
46
(
6
), pp.
589
601
.
22.
Zhang
,
D.
, and
Cherkaev
,
E.
, 2008, “
Pade Approximations for Identification of Air Bubble Volume From Temperature or Frequency Dependent Permittivity of a Two-Component Mixture
,”
Inverse Probl. Sci. Eng.
1741-5977,
16
(
4
), pp.
425
445
.
23.
Cherkaev
,
E.
, and
Ou
,
M. -J.
, 2008, “
De-Homogenization: Reconstruction of Moments of the Spectral Measure of Composite
,”
Inverse Probl.
0266-5611,
24
, p.
065008
.
24.
Park
,
Y. H.
,
Cha
,
H. S.
, and
Hong
,
J.
, 2007, “
Microscopic Multi-Directional Mechanical Properties of Human Femoral Cancellous Bone Tissue
,”
Key Eng. Mater.
1013-9826,
342
, pp.
13
16
.
25.
Bryant
,
J. D.
, and
David
,
T.
, 1989, “
Rheology of Bovine Marrow
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
203
(
2
), pp.
71
75
.
26.
Sobotková
,
E.
,
Hrubá
,
A.
,
Kiefman
,
J.
, and
Sobotka
,
Z.
, 1988, “
Rheological Behaviour of Bone Marrow
,”
Rheol. Acta
0035-4511,
22
, pp.
467
469
.
27.
Pan
,
W.
,
Petersen
,
E.
,
Cai
,
N.
,
Ma
,
G.
,
Lee
,
J. R.
,
Feng
,
Z.
,
Liao
,
K.
, and
Leong
,
K. W.
, 2006, “
Viscoelastic Properties of Human Mesenchymal Stem Cells
,”
Proceedings of the 27th Annual International Conference on IEEE Engineering in Medicine and Biology Society
, Shanghai, China, Vol.
17
, pp.
4854
4857
.
28.
Thurston
,
G. B.
, 1979, “
Rheological Parameters for the Viscosity, Viscoelasticity and Thixotropy of Blood
,”
Biorheology
0006-355X,
16
(
3
), pp.
149
162
.
29.
Gefen
,
A.
, and
Dilmoney
,
B.
, 2007, “
Mechanics of the Normal Woman’s Breast
,”
Technol. Health Care
0928-7329,
15
(
4
), pp.
259
271
.
30.
Vogel
,
C. R.
, 2002,
Computational Methods for Inverse Problems
,
SIAM
,
Philadelphia
, Chap. 1 and 7.
31.
Hansen
,
P. C.
, and
O’Leary
,
D. P.
, 1993, “
The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
14
(
6
), pp.
1487
1503
.
You do not currently have access to this content.