The ability to identify physiologic fatigue and related changes in kinematics can provide an important tool for diagnosing fatigue-related injuries. This study examined an exhaustive cycling task to demonstrate how changes in movement kinematics and variability reflect underlying changes in local muscle states. Motion kinematics data were used to construct fatigue features. Their multivariate analysis, based on smooth orthogonal decomposition, was used to reconstruct physiological fatigue. Two different features composed of (1) standard statistical metrics (SSM), which were a collection of standard long-time measures, and (2) phase space warping (PSW)–based metrics, which characterized short-time variations in the phase space trajectories, were considered. Movement kinematics and surface electromyography (EMG) signals were measured from the lower extremities of seven highly trained cyclists as they cycled to voluntary exhaustion on a stationary bicycle. Mean and median frequencies from the EMG time series were computed to measure the local fatigue dynamics of individual muscles independent of the SSM- and PSW-based features, which were extracted solely from the kinematics data. A nonlinear analysis of kinematic features was shown to be essential for capturing full multidimensional fatigue dynamics. A four-dimensional fatigue manifold identified using a nonlinear PSW-based analysis of kinematics data was shown to adequately predict all EMG-based individual muscle fatigue trends. While SSM-based analyses showed similar dominant global fatigue trends, they failed to capture individual muscle activities in a low-dimensional manifold. Therefore, the nonlinear PSW-based analysis of strictly kinematic time series data directly predicted all of the local muscle fatigue trends in a low-dimensional systemic fatigue trajectory. These results provide the first direct quantitative link between changes in muscle fatigue dynamics and resulting changes in movement kinematics.

1.
MacIntosh
,
B. R.
, and
Rassier
,
D. E.
, 2002, “
What Is Fatigue?
Can. J. Appl. Physiol.
1066-7814,
27
, pp.
42
55
.
2.
Côté
,
J. N.
,
Mathieu
,
P. A.
,
Levin
,
M. F.
, and
Feldman
,
A. G.
, 2002, “
Movement Reorganization to Compensate for Fatigue During Sawing
,”
Exp. Brain Res.
0014-4819,
146
(
3
), pp.
394
398
.
3.
Ebaugh
,
D. D.
,
McClure
,
P. W.
, and
Karduna
,
A. R.
, 2006, “
Effects of Shoulder Muscle Fatigue Caused by Repetitive Overhead Activities on Scapulothoracic and Glenohumeral Kinematics
,”
J. Electromyogr Kinesiol
1050-6411,
16
(
3
), pp.
224
235
.
4.
Madigan
,
M. L.
, and
Pidcoe
,
P. E.
, 2003, “
Changes in Landing Biomechanics During a Fatiguing Landing Activity
,”
J. Electromyogr Kinesiol
1050-6411,
13
(
5
), pp.
491
198
.
5.
Mizrahi
,
J.
,
Verbitsky
,
O.
,
Isakov
,
E.
, and
Daily
,
D.
, 2000, “
Effect of Fatigue on Leg Kinematics and Impact Acceleration in Long Distance Running
,”
Hum. Mov. Sci.
0167-9457,
19
(
2
), pp.
139
151
.
6.
Sparto
,
P.
,
Parnianpour
,
M.
,
Reinsel
,
T.
, and
Simon
,
S.
, 1997, “
The Effect of Fatigue on Multijoint Kinematics, Coordination, and Postural Stability During a Repetitive Lifting Test
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
25
(
1
), pp.
3
12
.
7.
Voge
,
K.
, and
Dingwell
,
J.
, 2003, “
Relative Timing of Changes in Muscle Fatigue and Movement Coordination During a Repetitive One-Hand Lifting Task
,”
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Institute of Electrical and Electronics Engineers,
Cancun, Mexico
, pp.
1807
1810
.
8.
Rodgers
,
M. M.
,
McQuade
,
K. J.
,
Rasch
,
E. K.
,
Keyser
,
R. E.
, and
Finley
,
M. A.
, 2003, “
Upper-Limb Fatigue-Related Joint Power Shifts in Experienced Wheelchair Users and Nonwheelchair Users
,”
J. Rehabil. Res. Dev.
0748-7711,
40
(
1
), pp.
27
37
.
9.
Sparto
,
P.
,
Parnianpour
,
M.
,
Reinsel
,
T.
, and
Simon
,
S.
, 1997, “
The Effect of Fatigue on Multijoint Kinematics and Load Sharing During a Repetitive Lifting Test
,”
Spine
0362-2436,
22
(
22
), pp.
2647
2654
.
10.
Asplund
,
C.
, and
St. Pierre
,
P.
, 2004, “
Knee Pain and Bicycling—Fitting Concepts for Clinicians
,”
Phys. Sports Med.
,
32
(
4
), pp.
23
30
.
11.
Conti-Wyneken
,
A.
, 1999, “
Bicycle Injuries
,”
Phy. Med. Rehab. Clin. N. Am.
,
10
(
1
), pp.
67
76
.
12.
Holmes
J. C.
,
Pruitt
,
A. L.
, and
Whalen
,
N. J.
, 1994, “
Lower Extremity Overuse in Bicycling
,”
Clin. Sports Med.
0278-5919,
13
(
1
), pp.
187
205
.
13.
Dannenberg
,
A.
,
Needle
,
S.
,
Mullady
,
D.
, and
Kolodner
,
K.
, 1996, “
Predictors of Injury Among 1638 Riders in a Recreational Long-Distance Bicycle Tour: Cycle Across Maryland
,”
Am. J. Sports Med.
0363-5465,
24
, pp.
747
753
.
14.
Wilber
,
C.
,
Holland
,
G.
,
Madison
,
R.
, and
Loy
,
S.
, 1995, “
An Epidemiological Analysis of Overuse Injuries Among Recreational Cyclists
,”
Int. J. Sports Med.
0172-4622,
16
, pp.
201
206
.
15.
Dettori
,
N.
, and
Norvell
,
D.
, 2006, “
Non-Traumatic Bicycle Injuries: A Review of the Literature
,”
Sports Med.
0112-1642,
36
, pp.
7
18
.
16.
Abbiss
,
C. R.
, and
Laursen
,
P. B.
, 2005, “
Models to Explain Fatigue During Prolonged Endurance Cycling
,”
Sports Med.
0112-1642,
35
(
10
), pp.
865
898
.
17.
Millet
,
G. Y.
, and
Lepers
,
R.
, 2004, “
Alterations of Neuromuscular Function After Prolonged Running, Cycling and Skiing Exercises
,”
Sports Med.
0112-1642,
34
(
2
), pp.
105
116
.
18.
Gonzalez-Alonso
,
J.
, and
Calbet
,
J. A. L.
, 2003, “
Reductions in Systemic and Skeletal Muscle Blood Flow and Oxygen Delivery Limit Maximal Aerobic Capacity in Humans
,”
Circulation
0009-7322,
107
(
6
), pp.
824
830
.
19.
Mortensen
,
S. P.
,
Dawson
,
E. A.
,
Yoshiga
,
C. C.
,
Dalsgaard
,
M. K.
,
Damsgaard
,
R.
,
Secher
,
N. H.
, and
Gonzalez-Alonso
,
J.
, 2005, “
Limitations to Systemic and Locomotor Limb Muscle Oxygen Delivery and Uptake During Maximal Exercise in Humans
,”
J. Physiol. (London)
0022-3751,
566
(
1
), pp.
273
285
.
20.
Lepers
,
R.
,
Hausswirth
,
C.
,
Maffiuletti
,
N.
,
Brisswalter
,
J.
, and
van Hoecke
,
J.
, 2000, “
Evidence of Neuromuscular Fatigue After Prolonged Cycling Exercise
,”
Med. Sci. Sports Exercise
0195-9131,
32
(
11
), pp.
1880
1886
.
21.
Lepers
,
R.
,
Maffiuletti
,
N. A.
,
Rochette
,
L.
,
Brugniaux
,
J.
, and
Millet
,
G. Y.
, 2002, “
Neuromuscular Fatigue During a Long-Duration Cycling Exercise
,”
J. Appl. Physiol.
8750-7587,
92
(
4
), pp.
1487
1493
.
22.
Sarre
,
G.
,
Lepers
,
R.
, and
van Hoecke
,
J.
, 2005, “
Stability of Pedalling Mechanics During a Prolonged Cycling Exercise Performed at Different Cadences
,”
J. Sports Sci.
0264-0414,
23
(
7
), pp.
693
701
.
23.
Neptune
,
R.
, and
Hull
,
M.
, 1999, “
A Theoretical Analysis of Preferred Pedaling Rate Selection in Endurance Cycling
,”
J. Biomech.
0021-9290,
32
(
4
), pp.
409
415
.
24.
Prilutsky
,
B. I.
, and
Gregor
,
R. J.
, 2000, “
Analysis of Muscle Coordination Strategies in Cycling
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
8
(
3
), pp.
362
370
.
25.
Dingwell
,
J. B.
,
Joubert
,
J. E.
,
Diefenthaeler
,
F.
, and
Trinity
,
J. D.
, 2008, “
Changes in Muscle Activity and Kinematics of Highly Trained Cyclists During Fatigue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
11
), pp.
2666
2674
.
26.
DeLuca
,
C.
, 1984, “
Myoelectrical Manifestations of Localized Muscular Fatigue in Humans
,”
Crit. Rev. Biomed. Eng.
0278-940X,
11
(
4
), pp.
251
279
.
27.
Oka
,
H.
, 1996, “
Estimation of Muscle Fatigue by Using Emg and Muscle Stiffness
,”
Bridging Disciplines for Biomedicine: Proceedings of the 18th Annual International Conference of the IEEE
,
Engineering in Medicine and Biology Society
, Vol.
4
, pp.
1449
1450
.
28.
MacIsaac
,
D.
,
Parker
,
P.
, and
Scott
,
R.
, 2001, “
The Short-Time Fourier Transform and Muscle Fatigue Assessment in Dynamic Contractions
,”
J. Electromyogr Kinesiol
1050-6411,
11
(
6
), pp.
439
449
.
29.
Beck
,
T. W.
,
Housh
,
T. J.
,
Johnson
,
G. O.
,
Weir
,
J. P.
,
Cramer
,
J. T.
,
Coburn
,
J. W.
, and
Malek
,
M. H.
, 2005, “
Comparison of Fourier and Wavelet Transform Procedures for Examining the Mechanomyographic and Electromyographic Frequency Domain Responses During Fatiguing Isokinetic Muscle Actions of the Biceps Brachii
,”
J. Electromyogr Kinesiol
1050-6411,
15
(
2
), pp.
190
199
.
30.
Clancy
,
E. A.
,
Farina
,
D.
, and
Merletti
,
R.
, 2005, “
Cross-Comparison of Time- and Frequency-Domain Methods for Monitoring the Myoelectric Signal During a Cyclic, Force-Varying, Fatiguing Hand-Grip Task
,”
J. Electromyogr Kinesiol
1050-6411,
15
(
3
), pp.
256
265
.
31.
Doebling
,
A. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, 1996, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” Los Alamos National Laboratory, Technical Report No. LA-13070-MS.
32.
Güttler
,
S.
,
Kantz
,
H.
, and
Olbrich
,
E.
, 2001, “
Reconstruction of the Parameter Spaces of Dynamical Systems
,”
Phys. Rev. E
1063-651X,
63
, p.
056215
.
33.
Chelidze
,
D.
, and
Liu
,
M.
, 2008, “
Reconstructing Slow-Time Dynamics from Fast-Time Measurements
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
366
, pp.
729
745
.
34.
Chelidze
,
D.
, and
Cusumano
,
J. P.
, 2006, “
Phase Space Warping: Nonlinear Time Series Analysis for Slowly Drifting Systems
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
364
, pp.
2495
2513
.
35.
Dingwell
,
J.
,
Napolitano
,
D. F.
, and
Chelidze
,
D.
, 2007, “
A Nonlinear Approach to Tracking Slow-Time-Scale Changes in Movement Kinematics
,”
J. Biomech.
0021-9290,
40
, pp.
1629
1634
.
36.
Chelidze
,
D.
,
Cusumano
,
J.
, and
Chatterjee
,
A.
, 2002, “
Dynamical Systems Approach to Damage Evaluation Tracking, Part 1: Description and Experimental Application
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
250
257
.
37.
Verdes
,
P.
,
Granitto
,
P.
,
Navone
,
H.
, and
Ceccatto
,
H.
, 2001, “
Nonstationary Time-Series Analysis: Accurate Reconstruction of Driving Forces.
,”
Phys. Rev. Lett.
0031-9007,
87
(
12
), p.
124101
.
38.
Verdes
,
P.
,
Granitto
,
P.
, and
Ceccatto
,
H.
, 2006, “
Overembedding Method for Modeling Nonstationary Systems
,”
Phys. Rev. Lett.
0031-9007,
96
(
11
), p.
118701
.
39.
Kantz
,
H.
, and
Schreiber
,
S.
, 2004,
Nonlinear Time Series Analysis
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
40.
Bulmer
,
M.
, 1971,
Principles of Statistics
,
Dover
,
New York
.
41.
Carlos
,
S.
, 1998, “
A Procedure to Estimate the Fractal Dimension of Waveforms
,”
Complexity International
,
5
, pp.
17
42
.
42.
Gnitecki
,
J.
, and
Moussavi
,
Z.
, 2005, “
The Fractality of Lung Sounds: A Comparison of Three Waveform Fractal Dimension Algorithms
,”
Chaos, Solitons Fractals
0960-0779,
26
(
4
), pp.
1065
1072
.
43.
Chelidze
,
D.
, 2004, “
Identifying Multidimensional Damage in a Hierarchical Dynamical System
,”
Nonlinear Dyn.
0924-090X,
31
, pp.
307
322
.
44.
Chelidze
,
D.
, and
Liu
,
M.
, 2006, “
Multidimensional Damage Identification Based on Phase Space Warping: An Experimental Study
,”
Nonlinear Dyn.
0924-090X,
46
, pp.
61
72
.
45.
Sauer
,
T.
,
Yorke
,
J. A.
, and
Casdagli
,
M.
, 1991, “
Embedology
,”
J. Stat. Phys.
0022-4715,
65
,(3–4), pp.
579
616
.
46.
Chelidze
,
D.
, and
Zhou
,
W.
, 2006, “
Smooth Orthogonal Decomposition Based Modal Analysis
,”
J. Sound Vib.
0022-460X,
292
(
3–5
), pp.
461
473
.
47.
Chatterjee
,
A.
,
Cusumano
,
J. P.
, and
Chelidze
,
D.
, 2002, “
Optimal Tracking of Parameter Drift in a Chaotic System: Experiment and Theory
,”
J. Sound Vib.
0022-460X,
250
(
5
), pp.
877
901
.
48.
Konrad
,
P.
, 2005,
The ABC of EMG: A Practical Introduction to Kinesiological Electromyography
,
Noraxon USA, Inc.
,
Scottsdale, AZ
.
49.
DeLuca
,
C.
, 1997, “
The Use of Surface Electromyography in Biomechanics
,”
J. Appl. Biomech.
1065-8483,
13
, pp.
135
163
.
50.
Potvin
,
J.
, 1997, “
Effects of Muscle Kinematics on Surface Emg Amplitude and Frequency During Fatiguing Dynamic Contractions
,”
J. Appl. Physiol.
8750-7587,
82
, pp.
144
151
.
You do not currently have access to this content.