Tensile loading of the human cervical spine results from noncontact inertial loading of the head as well as mandibular and craniofacial impacts. Current vehicle safety standards include a neck injury criterion based on beam theory that uses a linear combination of the normalized upper cervical axial force and sagittal plane moment. This study examines this criterion by imposing combined axial tension and bending to postmortem human subject (PMHS) ligamentous cervical spines. Tests were conducted on 20 unembalmed PMHSs. Nondestructive whole cervical spine tensile tests with varying cranial end condition and anteroposterior loading location were used to generate response corridors for computational model development and validation. The cervical spines were sectioned into three functional spinal segments (Occiput-C2, C4-C5, and C6-C7) for measurement of tensile structural response and failure testing. The upper cervical spine (Occiput-C2) was found to be significantly less stiff, absorb less strain energy, and fail at higher loads than the lower cervical spine (C4-C5 and C6-C7). Increasing the moment arm of the applied tensile load resulted in larger head rotations, larger moments, and significantly higher tensile ultimate strengths in the upper cervical spine. The strength of the upper cervical spine when loaded through the head center of gravity (2417±215N) was greater than when loaded over the occipital condyles (2032±250N), which is not predicted by beam theory. Beam theory predicts that increased tensile loading eccentricity results in decreased axial failure loads. Analyses of the force-deflection histories suggest that ligament loading in the upper cervical spine depends on the amount of head rotation orientation, which may explain why the neck is stronger in combined tension and extension.

1.
Myers
,
B. S.
, and
Winkelstein
,
B. A.
, 1995, “
Epidemiology, Classification, Mechanism, and Tolerance of Human Cervical Spine Injuries
,”
Crit. Rev. Biomed. Eng.
0278-940X,
23
(
5–6
), pp.
307
409
.
2.
Voigt
,
G. E.
, and
Skold
,
G.
, 1974, “
Ring Fractures of the Base of the Skull
,”
J. Trauma
0022-5282,
14
(
6
), pp.
494
505
.
3.
Harvey
,
F. H.
, and
Jones
,
A. M.
, 1980, “
‘Typical’ Basal Skull Fracture of Both Petrous Bones: An Unreliable Indicator of Head Impact Site
,”
J. Forensic Sci.
0022-1198,
25
(
2
), pp.
280
286
.
4.
Huelke
,
D. F.
,
Smock
,
W. S.
,
Fuller
,
P. M.
, and
Nichols
,
G. R.
, 1988, “
Basilar Skull Fractures Produced by Facial Impacts Case Histories and a Review of the Literature
,”
Proc. Stapp Car Crash Conf.
0585-086X,
32
, pp.
35
44
.
5.
Mcelhaney
,
J. H.
,
Hopper
,
R. H.
, Jr.
,
Nightingale
,
R. W.
, and
Myers
,
B. S.
, 1995, “
Mechanisms of Basilar Skull Fracture
,”
J. Neurotrauma
0897-7151,
12
(
4
), pp.
669
678
.
6.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,
Lippincott
,
Philadelphia, PA
.
7.
Macnab
,
I.
, 1971, “
The ‘Whiplash Syndrome’
,”
Orthop. Clin. North Am.
0030-5898,
2
(
2
), pp.
389
403
.
8.
Yoganandan
,
N.
, and
Pintar
,
F.
, 2000,
Frontiers in Whiplash Trauma: Clinical and Biomechanical
,
IOS
,
Amsterdam
.
9.
Sato
,
Y.
,
Ohshima
,
T.
, and
Kondo
,
T.
, 2002, “
Air Bag Injuries—A Literature Review in Consideration of Demands in Forensic Autopsies
,”
Forensic Sci. Int.
0379-0738,
128
(
3
), pp.
162
167
.
10.
Blacksin
,
M. F.
, 1993, “
Patterns of Fracture After Air Bag Deployment
,”
J. Trauma
0022-5282,
35
(
6
), pp.
840
843
.
11.
Kleinberger
,
M.
, and
Summers
,
L.
, 1997, “
Mechanism of Injuries for Adults and Children Resulting From Airbag Interaction
,”
41st Annual Meeting of the Association for the Advancement of Automotive Medicine
, pp.
405
420
.
12.
Traynelis
,
V. C.
, and
Gold
,
M.
, 1993, “
Cervical Spine Injury in an Air-Bag-Equipped Vehicle
,”
J. Spinal Disord.
0895-0385,
6
(
1
), pp.
60
61
.
13.
Claytor
,
B.
,
Maclennan
,
P. A.
,
Mcgwin
,
G.
,
Rue
,
L. W.
, and
Kirkpatrick
,
J. S.
, 2004, “
Cervical Spine Injury and Restraint System Use in Motor Vehicle Collisions
,”
Spine
0362-2436,
29
(
4
), pp.
386
389
.
14.
Chancey
,
V. C.
,
Nightingale
,
R. W.
,
Van Ee
,
C. A.
,
Knaub
,
K. E.
, and
Myers
,
B. S.
, 2003, “
Improved Estimation of Human Neck Tensile Tolerance: Reducing the Range of Reported Tolerance Using Anthropometrically Correct Muscles and Optimized Physiologic Initial Conditions
,”
Proc. Stapp Car Crash Conf.
0585-086X,
47
, pp.
135
153
.
15.
Kleinberger
,
M.
, 1998, “
Computational Modeling of Cervical Spine Biomechanics
,”
Frontiers in Head and Neck Trauma: Clinical and Biomechanical
,
IOS
,
Amsterdam
.
16.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
, 1996, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
0362-2436,
21
(
15
), pp.
1824
1834
.
17.
Van Der Horst
,
M.
, 2002, “
Human Head Neck Response in Frontal, Lateral and Rear End Impact Loading: Modelling and Validation
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven.
18.
Ewing
,
C. L.
, and
Thomas
,
D. J.
, 1972,
Human Head and Neck Response to Impact Acceleration
(
Namrl Monograph
Vol.
21
),
Naval Aerospace Medical Research Laboratory, Naval Aerospace Medical Institute, Naval Aerospace and Regional Medical Center
,
Pensacola, FL
.
19.
Thunnissen
,
J.
,
Wismans
,
J.
,
Ewing
,
C. L.
, and
Thomas
,
D. J.
, 1995, “
Human Volunteer Head-Neck Response in Frontal Flexion: A New Analysis
,”
Proc. Stapp Car Crash Conf.
0585-086X,
39
, pp.
439
460
.
20.
Mertz
,
H. J.
, and
Patrick
,
L. M.
, 1967, “
Investigation of the Kinematic and Kinetics of Whiplash
,”
Proc. Stapp Car Crash Conf.
,
11
, pp.
267
317
.
21.
Mertz
,
H. J.
, and
Patrick
,
L. M.
, 1971, “
Strength and Response of the Human Neck
,”
Proc. Stapp Car Crash Conf.
0585-086X,
15
, pp.
2903
2928
.
22.
Cheng
,
R.
,
Yang
,
K. H.
,
Levine
,
R. S.
,
King
,
A. I.
, and
Morgan
,
R.
, 1982, “
Injuries to the Cervical Spine Caused by a Distributed Frontal Load to the Chest
,”
Proc. Stapp Car Crash Conf.
0585-086X,
26
, pp.
899
938
.
23.
Clemens
,
H. J.
, and
Burow
,
K.
, 1972, “
Experimental Investigation on Injury Mechanisms of Cervical Spine at Frontal and Rear-Front Vehicle Impacts
,”
Proc. Stapp Car Crash Conf.
0585-086X,
16
, pp.
72
104
.
24.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
, 1991, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
0021-9290,
24
(
2
), pp.
95
107
.
25.
Shea
,
M.
,
Wittenberg
,
R. H.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
, 1992, “
In Vitro Hyperextension Injuries in the Human Cadaveric Cervical Spine
,”
J. Orthop. Res.
0736-0266,
10
(
6
), pp.
911
916
.
26.
Liu
,
Y. K.
,
Krieger
,
K. W.
,
Njus
,
G.
,
Ueno
,
K.
, and
Connors
,
M. P.
, 1982, “
Cervical Spine Stiffness and Geometry of the Young Human Male
,” Report No. AFAMRL-TR-80-138.
27.
Panjabi
,
M. M.
,
Summers
,
D. J.
,
Pelker
,
R. R.
,
Videman
,
T.
,
Friedlaender
,
G. E.
, and
Southwick
,
W. O.
, 1986, “
Three-Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine
,”
J. Orthop. Res.
0736-0266,
4
(
2
), pp.
152
161
.
28.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
,
Cusick
,
J. F.
,
Sances
,
J. A.
, and
Walsh
,
P. R.
, 1996, “
Human Head-Neck Biomechanics Under Axial Tension
,”
Med. Eng. Phys.
1350-4533,
18
(
4
), pp.
289
294
.
29.
Ching
,
R. P.
,
Nuckley
,
D. J.
,
Hertsted
,
S. M.
,
Eck
,
M. P.
,
Mann
,
F. A.
, and
Sun
,
E. A.
, 2001, “
Tensile Mechanics of the Developing Cervical Spine
,”
Proc. Stapp Car Crash Conf.
0585-086X,
45
, pp.
1
7
.
30.
Pintar
,
F. A.
,
Mayer
,
R. G.
,
Yoganandan
,
N.
, and
Sun
,
E.
, 2000, “
Child Neck Strength Characteristics Using an Animal Model
,”
Proc. Stapp Car Crash Conf.
0585-086X,
44
, pp.
77
83
.
31.
Sances
,
A.
,
Myklebust
,
J.
,
Cusick
,
J. F.
,
Weber
,
R.
,
Houterman
,
C.
,
Larson
,
S. J.
,
Walsh
,
P.
,
Chilbert
,
M.
,
Prieto
,
T.
,
Zyvoloski
,
M.
,
Ewing
,
C.
, and
Thomas
,
D.
, 1981, “
Experimental Studies of Brain and Neck Injury
,”
Proc. Stapp Car Crash Conf.
0585-086X,
25
, pp.
149
194
.
32.
Eppinger
,
R.
,
Sun
,
E.
,
Bandak
,
F.
,
Haffner
,
M.
,
Khaewpond
,
N.
,
Maltese
,
M.
,
Kuppa
,
S.
,
Nguyen
,
T.
,
Takhounts
,
E.
,
Tannous
,
R.
,
Ahang
,
A.
, and
Saul
,
R.
, 1999, “
Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems—2
,” National Highway Traffic Safety Administration, Technical Report No. 1998-4405-9.
33.
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Baisden
,
J.
, 2005, “
Characterizing Occipital Condyle Loads Under High-Speed Head Rotation
,”
Proc. Stapp Car Crash Conf.
0585-086X,
49
, pp.
33
47
.
34.
Van Ee
,
C. A.
,
Nightingale
,
R. W.
,
Camacho
,
D. L. A.
,
Chancey
,
V. C.
,
Knaub
,
K. E.
,
Sun
,
E. A.
, and
Myers
,
B. S.
, 2000, “
Tensile Properties of the Human Muscular and Ligamentous Cervical Spine
,”
Proc. Stapp Car Crash Conf.
0585-086X,
44
, pp.
85
102
.
35.
Nightingale
,
R. W.
,
Chancey
,
V. C.
,
Luck
,
J. F.
,
Tran
,
L.
,
Ottaviano
,
D.
, and
Myers
,
B. S.
, 2004, “
The Human Cervical Spine in Tension: Effects of Frame and Fixation Compliance on Structural Responses
,”
Traffic Inj. Prev.
,
5
(
2
), pp.
151
155
. 1538-9588
36.
Cavanaugh
,
J. M.
, and
King
,
A. I.
, 1990, “
Control of Transmission of HIV and Other Bloodborne Pathogens in Biomechanical Cadaveric Testing
,”
J. Orthop. Res.
0736-0266,
8
(
2
), pp.
159
166
.
37.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
, 2002, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
0021-9290,
35
(
6
), pp.
725
732
.
38.
Matsushita
,
T.
,
Sato
,
T. B.
,
Hirabayashi
,
K.
,
Fujimura
,
S.
,
Asazuma
,
T.
, and
Takatori
,
T.
, 1994, “
X-Ray Study of the Human Neck Motion Due to Head Inertia Loading
,”
Proc. Stapp Car Crash Conf.
0585-086X,
38
, pp.
55
64
.
39.
Walker
,
L. B.
,
Harris
,
E. H.
, and
Pontius
,
U. R.
, 1973, “
Mass, Volume, Center of Mass, and Mass Moment of Inertia of Head and Head and Neck of Human Body
,”
Proc. Stapp Car Crash Conf.
0585-086X,
17
, pp.
525
537
.
40.
Byars
,
E. F.
,
Haynes
,
D.
,
Durham
,
T.
, and
Lilly
,
H.
, 1970, “
Craniometric Measurements of Human Skulls
,” ASME Publication 70-WA/BHF-8, pp.
1
11
.
41.
Nightingale
,
R. W.
,
Carol Chancey
,
V.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
, 2007, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
535
542
.
42.
Fung
,
Y. C.
, 1972, “
Stress-Strain-History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundations and Objectives
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Simon
,
B. R.
,
Coats
,
R. S.
, and
Woo
,
S. L.
, 1984, “
Relaxation and Creep Quasilinear Viscoelastic Models for Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
2
), pp.
159
164
.
44.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Van Ee
,
C. A.
, and
Myers
,
B. S.
, 1998, “
Injury Mechanisms in the Pediatric Cervicals Spine During Out-of-Position Airbag Deployments
,”
42nd Annual Proceedings of the Association for the Advancement of Automotive Medicine
, pp.
153
164
.
45.
Portnoy
,
H. D.
,
Mcelhaney
,
J. H.
,
Melvin
,
J. W.
, and
Croissant
,
P. D.
, 1971, “
Mechanism of Cervical Spine Injury in Auto Accidents
,”
Proceeding of the 15th Conference of the AAAM
, pp.
58
83
.
46.
Fielding
,
J. W.
,
Francis
,
W. R.
, Jr.
,
Hawkins
,
R. J.
,
Pepin
,
J.
, and
Hensinger
,
R.
, 1989, “
Traumatic Spondylolisthesis of the Axis
,”
Clin. Orthop. Relat. Res.
0009-921X,
239
(
1
), pp.
47
52
.
47.
Harris
,
J. H.
,
Edeiken-Monroe
,
B.
, and
Kopaniky
,
D. R.
, 1986, “
A Practical Classification of Acute Cervical Spine Injuries
,”
Orthop. Clin. North Am.
0030-5898,
17
(
1
), pp.
15
30
.
48.
Wood-Jones
,
F.
, 1913, “
The Ideal Lesion Produced by Judicial Hanging
,”
Lancet
0140-6736,
181
(
4662
), p.
53
.
You do not currently have access to this content.