The shoe-surface interface has been implicated as a possible risk factor for anterior cruciate ligament (ACL) injuries. The purpose of this study is to develop a biomechanical, cadaveric model to evaluate the effect of various shoe-surface interfaces on ACL strain. There will be a significant difference in ACL strain between different shoe-surface combinations when a standardized rotational moment (a simulated cutting movement) is applied to an axially loaded lower extremity. The study design was a controlled laboratory study. Eight fresh-frozen cadaveric lower extremities were thawed and the femurs were potted with the knee in 30 deg of flexion. Each specimen was placed in a custom-made testing apparatus, which allowed axial loading and tibial rotation but prevented femoral rotation. For each specimen, a 500 N axial load and a 1.5 Nm internal rotation moment were placed for four different shoe-surface combinations: group I (AstroTurf-turf shoes), group II (modern playing turf-turf shoes), group III (modern playing turf-cleats), and group IV (natural grass-cleats). Maximum strain, initial axial force and moment, and maximum axial force and moment were calculated by a strain gauge and a six component force plate. The preliminary trials confirmed a linear relationship between strain and both the moment and the axial force for our testing configuration. In the experimental trials, the average maximum strain was 3.90, 3.19, 3.14, and 2.16 for groups I–IV, respectively. Group IV had significantly less maximum strain (p<0.05) than each of the other groups. This model can reproducibly create a detectable strain in the anteromedial bundle of the ACL in response to a given axial load and internal rotation moment. Within the elastic range of the stress-strain curve, the natural grass and cleat combination produced less strain in the ACL than the other combinations. The favorable biomechanical properties of the cleat-grass interface may result in fewer noncontact ACL injuries.

1.
1996, Center for Disease Control and Prevention: National Hospital Discharge Survey.
2.
Daniel
,
D. M.
, and
Fritschy
,
D.
, 1994, “
Anterior Cruciate Ligament Injuries
,”
Orthopedic Sports Medicine: Principles of Practice
,
J.
DeLee
and
D. J.
Drez
, eds.,
Saunders
,
Philadelphia, PA
, pp.
1313
1361
.
3.
Griffin
,
L. Y.
,
Agel
,
J.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Dick
,
R. W.
,
Garrett
,
W. E.
,
Garrick
,
J. G.
,
Hewett
,
T. E.
,
Huston
,
L.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Kibler
,
W. B.
,
Lephart
,
S.
,
Lewis
,
J. L.
,
Lindenfeld
,
T. N.
,
Mandelbaum
,
B. R.
,
Marchak
,
P.
,
Teitz
,
C. C.
, , and
Wojtys
,
E. M.
, 2000, “
Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
8
(
3
), pp.
141
150
.
4.
Griffin
,
L. Y.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Bahr
,
R.
,
Beynnon
,
B. D.
,
Demaio
,
M.
,
Dick
,
R. W.
,
Engebretsen
,
L.
,
Garrett
,
W. E.
, Jr.
,
Hannafin
,
J. A.
,
Hewett
,
T. E.
,
Houston
,
L. J.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Lephart
,
S.
,
Mendelbaum
,
B. R.
,
Mann
,
B. J.
,
Marks
,
P. H.
,
Marshall
,
S. W.
,
Myklebust
,
G.
,
Noyes
,
F. R.
,
Powers
,
C.
,
Shields
,
C.
, Jr.
,
Shultz
,
S. J.
,
Silvers
,
H.
,
Slauterbeck
,
J.
,
Taylor
,
D. C.
,
Teitz
,
C. C.
,
Wojtys
,
E. M.
, and
Yu
,
B.
, 2006, “
Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries: A Review of the Hunt Valley II Meeting, January 2005
,”
Am. J. Sports Med.
0363-5465,
34
(
9
), pp.
1512
1532
.
5.
Agel
,
J.
,
Arendt
,
E. A.
, and
Bershadsky
,
B.
, 2005, “
Anterior Cruciate Ligament Injury in National Collegiate Athletic Association Basketball and Soccer: A 13-Year Review
,”
Am. J. Sports Med.
0363-5465,
33
(
4
), pp.
524
530
.
6.
Gottlob
,
C. A.
, and
Baker
,
C. L.
, Jr.
, 2000, “
Anterior Cruciate Ligament Reconstruction: Socioeconomic Issues and Cost Effectiveness
,”
Am. J. Orthop.
1078-4519,
29
(
6
), pp.
472
476
.
7.
Gottlob
,
C. A.
,
Baker
,
C. L.
, Jr.
,
Pellissier
,
J. M.
, and
Colvin
,
L.
,1999 “
Cost Effectiveness of Anterior Cruciate Ligament Reconstruction in Young Adults
,”
Clin. Orthop. Relat. Res.
0009-921X,
367
, pp.
272
282
.
8.
Myklebust
,
G.
,
Maehlum
,
S.
,
Holm
,
I.
, and
Bahr
,
R.
, 1998, “
A Prospective Cohort Study of Anterior Cruciate Ligament Injuries in Elite Norwegian Team Handball
,”
Scand. J. Med. Sci. Sports
0905-7188,
8
(
3
), pp.
149
153
.
9.
Nigg
,
B. M.
, and
Segesser
,
B.
, 1988, “
The Influence of Playing Surfaces on the Load on the Locomotor System and on Football and Tennis Injuries
,”
Sports Med.
0112-1642,
5
(
6
), pp.
375
385
.
10.
Orchard
,
J.
,
Seward
,
H.
,
McGivern
,
J.
, and
Hood
,
S.
, 1999, “
Rainfall, Evaporation and the Risk of Non-contact Anterior Cruciate Ligament Injury in the Australian Football League
,”
Med. J. Aust.
0025-729X,
170
(
7
), pp.
304
306
.
11.
Orchard
,
J. W.
, and
Powell
,
J. W.
, 2003, “
Risk of Knee and Ankle Sprains Under Various Weather Conditions in American Football
,”
Med. Sci. Sports Exercise
0195-9131,
35
(
7
), pp.
1118
1123
.
12.
Myklebust
,
G.
,
Maehlum
,
S.
,
Engebretsen
,
L.
,
Strand
,
T.
, and
Solheim
,
E.
, 1997, “
Registration of Cruciate Ligament Injuries in Norwegian Top Level Team Handball. A Prospective Study Covering Two Seasons
,”
Scand. J. Med. Sci. Sports
0905-7188,
7
(
5
), pp.
289
292
.
13.
Powell
,
J. W.
, and
Schootman
,
M.
, 1992, “
A Multivariate Risk Analysis of Selected Playing Surfaces in the National Football League: 1980 to 1989. An Epidemiologic Study of Knee Injuries
,”
Am. J. Sports Med.
0363-5465,
20
(
6
), pp.
686
694
.
14.
Scranton
,
P. E.
, Jr.
,
Whitesel
,
J. P.
,
Powell
,
J. W.
,
Dormer
,
S. G.
,
Heidt
,
R. S.
,
Losse
,
G.
, and
Cawley
,
P. W.
, 1997, “
A Review of Selected Noncontact Anterior Cruciate Ligament Injuries in the National Football League
,”
Foot Ankle Int.
1071-1007,
18
(
12
), pp.
772
776
.
15.
Parekh
,
S. G.
,
Sennett
,
B. J.
, and
Carey
,
J. L.
, 2005, “
Epidemiology and Outcomes of Anterior Cruciate Ligament Injuries in the National Football League
,”
AAOS Annual Meeting
, Washington, DC.
16.
Meyers
,
M. C.
, and
Barnhill
,
B. S.
, 2004, “
Incidence, Causes, and Severity of High School Football Injuries on FieldTurf Versus Natural Grass: A 5-Year Prospective Study
,”
Am. J. Sports Med.
0363-5465,
32
(
7
), pp.
1626
1638
.
17.
Nicholas
,
J. A.
,
Rosenthal
,
P. P.
, and
Gleim
,
G. W.
, 1988, “
A Historical Perspective of Injuries in Professional Football. Twenty-Six Years of Game-Related Events
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
260
(
7
), pp.
939
944
.
18.
Ramirez
,
M.
,
Schaffer
,
K. B.
,
Shen
,
H.
, 2006, “
Injuries to High School Football Athletes in California
,”
Am. J. Sports Med.
0363-5465,
34
(
7
), pp.
1147
1158
.
19.
Torg
,
J. S.
,
Quedenfeld
,
T. C.
, and
Landau
,
S.
, 1974, “
The Shoe-Surface Interface and Its Relationship to Football Knee Injuries
,”
J. Sports Med.
0090-4201,
2
(
5
), pp.
261
269
.
20.
Andreasson
,
G.
,
Lindenberger
,
U.
,
Renstrom
,
P.
, and
Peterson
,
L.
, 1986, “
Torque Developed at Simulated Sliding Between Sport Shoes and an Artificial Turf
,”
Am. J. Sports Med.
0363-5465,
14
(
3
), pp.
225
230
.
21.
Cawley
,
P. W.
,
Heidt
,
R. S.
, Jr.
,
Scranton
,
P. E.
, Jr.
,
Loose
,
G. M.
, and
Howard
,
M. E.
, 2003, “
Physiologic Axial Load, Frictional Resistance, and the Football Shoe-Surface Interface
,”
Foot Ankle Int.
1071-1007,
24
(
7
), pp.
551
556
.
22.
Livesay
,
G. A.
,
Reda
,
D. R.
, and
Nauman
,
E. A.
, 2006, “
Peak Torque and Rotational Stiffness Developed at the Shoe-Surface Interface: The Effect of Shoe Type and Playing Surface
,”
Am. J. Sports Med.
0363-5465,
34
(
3
), pp.
415
422
.
23.
Loh
,
J. C.
,
Fukuda
,
Y.
,
Tsuda
,
E.
,
Tsuda
,
E.
,
Steadman
,
R. J.
,
Fu
,
F. H.
, and
Woo
,
S. L.-Y.
, 2003, “
Knee Stability and Graft Function Following Anterior Cruciate Ligament Reconstruction: Comparison Between 11 o’clock and 10 o’clock Femoral Tunnel Placement. 2002 Richard O’Connor Award Paper
,”
Arthroscopy: J. Relat Surg.
,
19
(
3
), pp.
297
304
. 0749-8063
24.
Arendt
,
E.
, and
Dick
,
R.
, 1995, “
Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. NCAA Data and Review of Literature
,”
Am. J. Sports Med.
0363-5465,
23
(
6
), pp.
694
701
.
25.
Arendt
,
E. A.
,
Agel
,
J.
, and
Dick
,
R.
, 1999, “
Anterior Cruciate Ligament Injury Patterns Among Collegiate Men and Women
,”
J. Athl. Train.
,
34
(
2
), pp.
86
92
. 1062-6050
26.
Bradley
,
J. P.
,
Klimkiewicz
,
J. J.
,
Rytel
,
M. J.
, and
Powell
,
J. W.
, 2002, “
Anterior Cruciate Ligament Injuries in the National Football League: Epidemiology and Current Treatment Trends Among Team Physicians
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
18
(
5
), pp.
502
509
.
27.
Lambson
,
R. B.
,
Barnhill
,
B. S.
, and
Higgins
,
R. W.
, 1996, “
Football Cleat Design and Its Effect on Anterior Cruciate Ligament Injuries. A Three-Year Prospective Study
,”
Am. J. Sports Med.
0363-5465,
24
(
2
), pp.
155
159
.
28.
Levy
,
I. M.
,
Skovron
,
M. L.
, and
Agel
,
J.
, 1990, “
Living With Artificial Grass: A Knowledge Update. Part 1: Basic Science
,”
Am. J. Sports Med.
0363-5465,
18
(
4
), pp.
406
412
.
29.
Orchard
,
J.
, 2002, “
Is there a Relationship Between Ground and Climatic Conditions and Injuries in Football?
Sports Med.
0112-1642,
32
(
7
), pp.
419
432
.
30.
Orchard
,
J. W.
,
Chivers
,
I.
,
Aldous
,
D.
,
Bennell
,
K.
, and
Seward
,
H.
, 2005, “
Rye Grass is Associated With Fewer Non-Contact Anterior Cruciate Ligament Injuries Than Bermuda Grass
,”
Br. J. Sports Med.
0306-3674,
39
(
10
), pp.
704
709
.
31.
Skovron
,
M. L.
,
Levy
,
I. M.
, and
Agel
,
J.
, 1990, “
Living With Artificial Grass: A Knowledge Update. Part 2: Epidemiology
,”
Am. J. Sports Med.
0363-5465,
18
(
5
), pp.
510
513
.
32.
Bonstingl
,
R. W.
,
Morehouse
,
C. A.
, and
Niebel
,
B. W.
, 1975, “
Torques Developed by Different Types of Shoes on Various Playing Surfaces
,”
Med. Sci. Sports
0025-7990,
7
(
2
), pp.
127
131
.
33.
Bowers
,
K. D.
, Jr.
, and
Martin
,
R. B.
, 1975, “
Cleat-Surface Friction on New and Old AstroTurf
,”
Med. Sci. Sports
0025-7990,
7
(
2
), pp.
132
135
.
34.
Culpepper
,
M. I.
, and
Niemann
,
K. M.
, 1983, “
An Investigation of the Shoe-Turf Interface Using Different Types of Shoes on Poly-Turf and Astro-Turf: Torque and Release Coefficients
,”
Ala. J. Med. Sci.
0002-4252,
20
(
4
), pp.
387
390
.
35.
Heidt
,
R. S.
, Jr.
,
Dormer
,
S. G.
,
Cawley
,
P. W.
,
Scranton
,
P. E.
,
Loose
,
G.
, and
Howard
,
M.
, 1996, “
Differences in Friction and Torsional Resistance in Athletic Shoe-Turf Surface Interfaces
,”
Am. J. Sports Med.
0363-5465,
24
(
6
), pp.
834
842
.
36.
Rheinstein
,
D. J.
,
Morehouse
,
C. A.
, and
Niebel
,
B. W.
, 1978, “
Effects on Traction of Outsole Composition and Hardnesses of Basketball Shoes and Three Types of Playing Surfaces
,”
Med. Sci. Sports
0025-7990,
10
(
4
), pp.
282
288
.
37.
Stanitski
,
C. L.
,
McMaster
,
J. H.
, and
Ferguson
,
R. J.
, 1974, “
Synthetic Turf and Grass: A Comparative Study
,”
J. Sports Med.
0090-4201,
2
(
1
), pp.
22
26
.
38.
Beynnon
,
B.
,
Howe
,
J. G.
,
Pope
,
M. H.
,
Johnson
,
. J.
, and
Fleming
,
B. C.
, 1992, “
The Measurement of Anterior Cruciate Ligament Strain In Vivo
,”
Int. Orthop.
0341-2695,
16
(
1
), pp.
1
12
.
39.
Beynnon
,
B. D.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Nichols
,
C. E.
,
Pope
,
M. H.
, and
Haugh
,
L D.
.
, 1994, “
The Measurement of Elongation of Anterior Cruciate-Ligament Grafts In Vivo
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
(
4
), pp.
520
531
.
40.
Beynnon
,
B. D.
,
Uh
,
B. S.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Renstrom
,
P. A.
, and
Nichols
,
C. E.
, 2001, “
The Elongation Behavior of the Anterior Cruciate Ligament Graft In Vivo. A Long-Term Follow-Up Study
,”
Am. J. Sports Med.
0363-5465,
29
(
2
), pp.
161
166
.
41.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Tohyama
,
H.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Renström
,
P.
, and
Pope
,
M. H.
, 1994, “
Determination of a Zero Strain Reference for the Anteromedial Band of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
12
(
6
), pp.
789
795
.
42.
Howe
,
J. G.
,
Wertheimer
,
C.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Pope
,
M. H.
, and
Beynnon
,
M. S.
, 1990, “
Arthroscopic Strain Gauge Measurement of the Normal Anterior Cruciate Ligament
,”
Arthroscopy: J. Relat Surg.
,
6
(
3
), pp.
198
204
. 0749-8063
43.
Beynnon
,
B. D.
, and
Fleming
,
B. C.
, 1998, “
Anterior Cruciate Ligament Strain In-Vivo: A Review of Previous Work
,”
ASME J. Biomech.
,
31
(
6
), pp.
519
525
. 0021-9290
44.
Arms
,
S. W.
,
Pope
,
M. H.
,
Johnson
,
R. J.
,
Fischer
,
R. A.
,
Arvidsson
,
I.
, and
Eriksson
,
E.
, 1984, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
Am. J. Sports Med.
0363-5465,
12
(
1
), pp.
8
18
.
45.
2008, United States Consumer Product Safety Commission, American Society for Testing and Materials—Athletic Fields.
46.
Beynnon
,
B. D.
,
Fleming
,
B. C.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Renstrom
,
P. A.
, and
Pope
,
M. H.
, 1995, “
Anterior Cruciate Ligament Strain Behavior During Rehabilitation Exercises In Vivo
,”
Am. J. Sports Med.
0363-5465,
23
(
1
), pp.
24
34
.
47.
Beynnon
,
B. D.
,
Pope
,
M. H.
,
Wertheimer
,
C. M.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Nicholas
,
C. E.
, and
Howe
,
J. G.
, 1992, “
The Effect of Functional Knee-Braces on Strain on the Anterior Cruciate Ligament In Vivo
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
74
(
9
), pp.
1298
1312
.
48.
DeMorat
,
G.
,
Weinhold
,
P.
,
Blackburn
,
T.
,
Chudik
,
S.
, and
Garrett
,
W.
, 2004, “
Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
0363-5465,
32
(
2
), pp.
477
483
.
49.
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Ohlen
,
G.
,
Johnson
,
R. J.
,
Peura
,
G. D.
,
Beynnon
,
B. D.
, and
Badger
,
G. J.
, 2001, “
The Gastrocnemius Muscle is an Antagonist of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
19
(
6
), pp.
1178
1184
.
50.
Shimokochi
,
Y.
, and
Shultz
,
S. J.
, 2008, “
Mechanisms of Noncontact Anterior Cruciate Ligament Injury
,”
J. Athl. Train.
,
43
(
4
), pp.
396
408
. 1062-6050
51.
2006, National Football League Players Association: Playing Surfaces Opinion Survey.
You do not currently have access to this content.