Atherosclerotic plaque rupture leading to stroke is the major cause of long-term disability as well as the third most common cause of mortality. Image-based computational models have been introduced seeking critical mechanical indicators, which may be used for plaque vulnerability assessment. This study extends the previous 2D critical stress concept to 3D by using in vivo magnetic resonance image (MRI) data of human atherosclerotic carotid plaques and 3D fluid-structure interaction (FSI) models to: identify 3D critical plaque wall stress (CPWS) and critical flow shear stress (CFSS) and to investigate their associations with plaque rupture. In vivo MRI data of carotid plaques from 18 patients scheduled for endarterectomy were acquired using histologically validated multicontrast protocols. Of the 18 plaques, histology-confirmed that six had prior rupture (group 1) as evidenced by presence of ulceration. The remaining 12 plaques (group 2) contained no rupture. The 3D multicomponent FSI models were constructed for each plaque to obtain 3D plaque wall stress (PWS) and flow shear stress (FSS) distributions. Three-dimensional CPWS and CFSS, defined as maxima of PWS and FSS from all vulnerable sites, were determined for each plaque to investigate their association with plaque rupture. Slice-based critical PWS and FSS were also calculated for all slices for more detailed analysis and comparison. The mean 3D CPWS of group 1 was 263.44 kPa, which was 100% higher than that from group 2 (132.77, p=0.03984). Five of the six ruptured plaques had 3D CPWS sites, matching the histology-confirmed rupture sites with an 83% agreement. Although the mean 3D CFSS (92.94dyn/cm2) for group 1 was 76% higher than that for group 2 (52.70dyn/cm2), slice-based CFSS showed no significant difference between the two groups. Only two of the six ruptured plaques had 3D CFSS sites matching the histology-confirmed rupture sites with a 33% agreement. CFSS had a good correlation with plaque stenosis severity (R2=0.40 with an exponential function fitting 3D CFSS data). This in vivo MRI pilot study using plaques with and without rupture demonstrates that 3D critical plaque wall stress values are more closely associated with atherosclerotic plaque rupture then critical flow shear stresses. Critical wall stress values may become indicators of high risk sites of rupture. Future work with a larger population will establish a possible CPWS-based plaque vulnerability classification.

1.
Yuan
,
C.
,
Zhang
,
S. X.
,
Polissar
,
N. L.
,
Echelard
,
D.
,
Ortiz
,
G.
,
Davis
,
J. W.
,
Ellington
,
E.
,
Ferguson
,
M. S.
, and
Hatsukami
,
T. S.
, 2002, “
Identification of Fibrous Cap Rupture With MRI Is Highly Associated With Recent Transient Ischemic Attack or Stroke
,”
Circulation
0009-7322,
105
, pp.
181
185
.
2.
Casscells
,
W.
,
Naghavi
,
M.
, and
Willerson
,
J. T.
, 2003, “
Vulnerable Atherosclerotic Plaque: A Multifocal Disease
,”
Circulation
0009-7322,
107
, pp.
2072
2075
.
3.
1998, “
The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification
,”
AHA Monograph Series
,
V.
Fuster
,
J. F.
Cornhill
,
R. E.
Dinsmore
,
J. T.
Fallon
,
W.
Insull
,
P.
Libby
,
S.
Nissen
,
M. E.
Rosenfeld
, and
W. D.
Wagner
, eds.,
Futura
,
Armonk, NY
.
4.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
, 2001, “
Special Review: Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
0033-8419,
221
, pp.
285
299
.
5.
Saam
,
T.
,
Ferguson
,
M. S.
,
Yarnykh
,
V. L.
,
Takaya
,
N.
,
Xu
,
D.
,
Polissar
,
N. L.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
, 2005, “
Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI
,”
Arterioscler., Thromb., Vasc., Biol.
,
25
(
1
), pp.
234
239
.
6.
Pasterkamp
,
G.
, and
Smits
,
P. C.
, 2002, “
Imaging of Atherosclerosis. Remodelling of Coronary Arteries
,”
J. Cardiovasc. Risk
1350-6277,
9
, pp.
229
235
.
7.
Mitsumori
,
L. M.
,
Hatsukami
,
T. S.
,
Ferguson
,
M. S.
,
Kerwin
,
W. S.
,
Cai
,
J.
, and
Yuan
,
C.
, 2003, “
In Vivo Accuracy of Multisequence MR Imaging for Identifying Unstable Fibrous Caps in Advanced Human Carotid
,”
J. Magn. Reson. Imaging
,
17
, pp.
410
420
.
8.
Hatsukami
,
T. S.
,
Ross
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
, 2000, “
Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo With High-Resolution Magnetic Resonance Imaging
,”
Circulation
0009-7322,
102
, pp.
959
964
.
9.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Ferguson
,
M. S.
,
Polissar
,
N. L.
,
Echelard
,
D. E.
,
Ortiz
,
G.
,
Small
,
R.
,
Davies
,
J. W.
,
Kerwin
,
W. S.
, and
Hatsukami
,
T. S.
, 2001, “
In Vivo Accuracy of Multispectral MR Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques
,”
Circulation
0009-7322,
104
, pp.
2051
2056
.
10.
Wiesmann
,
F.
,
Robson
,
M. D.
,
Francis
,
J.
,
Petersen
,
S. E.
,
Leeson
,
C. P.
,
Channon
,
K. M.
, and
Neubauer
,
S.
, 2003, “
Images in Cardiovascular Medicine. Visualization of the Ruptured Plaque by Magnetic Resonance Imaging
,”
Circulation
0009-7322,
108
, p.
2542
.
11.
Chu
,
B.
,
Yuan
,
C.
,
Takaya
,
N.
,
Shewchuk
,
J. R.
,
Clowes
,
A. W.
, and
Hatsukami
,
T. S.
, 2006, “
Images in Cardiovascular Medicine. Serial High-Spatial-Resolution, Multisequence Magnetic Resonance Imaging Studies Identify Fibrous Cap Rupture and Penetrating Ulcer Into Carotid Atherosclerotic Plaque
,”
Circulation
0009-7322,
113
, pp.
e660
e661
.
12.
Cai
,
J. M.
,
Hatsukami
,
T. S.
,
Ferguson
,
M. S.
,
Small
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
, 2002, “
Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging
,”
Circulation
0009-7322,
106
, pp.
1368
1373
.
13.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bause
,
C. A. J.
, 2002, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
0090-6964,
30
(
6
), pp.
753
767
.
14.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
657
665
.
15.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
483
497
.
16.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061013
.
17.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
, 2008, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
0140-0118,
46
(
11
), pp.
1097
1112
.
18.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
(
8
), pp.
2341
2347
.
19.
Zhu
,
H.
,
Ding
,
Z.
,
Piana
,
R. N.
,
Gehrig
,
T. R.
,
Friedman
,
M. H.
, 2009. “
Cataloguing the Geometry of the Human Coronary Arteries: A Potential Tool For Predicting Risk of Coronary Artery Disease
,”
Int. J. Cardiol.
0167-5273,
135
(
1
), pp.
43
52
.
20.
Li
,
Z. Y.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
U-King-Im
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L. Q.
, and
Gillard
,
J. H.
, 2006, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
0021-9290,
39
, pp.
2611
2622
.
21.
Suo
,
J.
,
Oshinski
,
J. N.
, and
Giddens
,
D. P.
, 2008, “
Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence
,”
Mol. Cell. Biomech.
,
5
(
1
), pp.
9
18
.
22.
Kaazempur-Mofrad
,
M. R.
,
Isasi
,
A. G.
,
Younis
,
H. F.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Sukhova
,
G.
,
Lamuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
, 2004, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
932
946
.
23.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. V.
, 2000, “
Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study
,”
J. Magn. Reson. Imaging
,
11
, pp.
299
311
.
24.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
, 1992, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
0009-7330,
71
, pp.
850
858
.
25.
Vengrenyuk
,
Y.
,
Carlier
,
S.
,
Xanthos
,
S.
,
Cardoso
,
L.
,
Ganatos
,
P.
,
Virmani
,
R.
,
Einav
,
S.
,
Gilchrist
,
L.
, and
Weinbaum
,
S.
, 2006, “
A Hypothesis for Vulnerable Plaque Rupture due to Stress-Induced Debonding Around Cellular Microcalcifications in Thin Fibrous Caps
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
40
), pp.
14678
14683
.
26.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
O. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
, 2004, “
3D MRI-Based Multi-Component FSI Models for Atherosclerotic Plaques a 3-D FSI Model
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
947
960
.
27.
Tang
,
D.
,
Yang
,
C.
, and
Yuan
,
C.
, 2006, “
Mechanical Image Analysis Using Finite Element Method
,”
Carotid Disease—The Role of Imaging in Diagnosis and Management
,
J.
Gillard
,
M.
Graves
,
T.
Hatsukami
, and
C.
Yuan
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
323
339
.
28.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Petruccelli
,
J. D.
,
Sicard
,
G. A.
, and
Yuan
,
C.
, 2005, “
Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1789
1801
.
29.
Tang
,
D.
,
Teng
,
Z. Z.
,
Canton
,
G.
,
Hatsukami
,
T. S.
,
Dong
,
L.
,
Huang
,
X. Y.
, and
Yuan
,
C.
, 2009, “
Local Critical Stress Correlates Better Than Global Maximum Stress With Plaque Morphological Features Linked to Atherosclerotic Plaque Vulnerability: An In Vivo Multi-Patient Study
,”
Biomed. Eng. Online
1475-925X,
8
(
15
), pp.
1
9
.
30.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
, 2009, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses. An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
0039-2499,
40
, pp.
3258
3263
.
31.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
0021-9290,
37
, pp.
1767
1775
.
32.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
,
Bach
,
R.
, and
Ku
,
D. N.
, 2009, “
3D MRI-Based Anisotropic FSI Models with Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061010
.
33.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
, 2005, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Behaviors in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1185
1194
.
34.
Yang
,
C.
,
Tang
,
D.
,
Yuan
,
C.
,
Hatsukami
,
T. S.
,
Zheng
,
J.
, and
Woodard
,
P. K.
, 2007, “
In Vivo/Ex Vivo MRI-Based 3D Models With Fluid-Structure Interactions for Human Atherosclerotic Plaques Compared With Fluid/Wall-Only Models
,”
Comput. Model. Eng. Sci.
1526-1492,
19
(
3
), pp.
233
245
.
35.
Kerwin
,
W.
,
Xu
,
D.
,
Liu
,
F.
,
Saam
,
T.
,
Underhill
,
H.
,
Takaya
,
N.
,
Chu
,
B.
,
Hatsukami
,
T.
, and
Yuan
,
C.
, 2007, “
Magnetic Resonance Imaging of Carotid Atherosclerosis: Plaque Analysis
,”
Top. Magn. Reson. Imaging
,
18
, pp.
371
378
.
36.
Saam
,
T.
,
Yuan
,
C.
,
Chu
,
B.
,
Takaya
,
N.
,
Underhill
,
H.
,
Cai
,
J.
,
Tran
,
N.
,
Polissar
,
N. L.
,
Neradilek
,
B.
,
Jarvik
,
G. P.
,
Isaac
,
C.
,
Garden
,
G. A.
,
Maravilla
,
K. R.
,
Hashimoto
,
B.
, and
Hatsukami
,
T. S.
, 2007, “
Predictors of Carotid Atherosclerotic Plaque Progression as Measured by Noninvasive Magnetic Resonance Imaging
,”
Atherosclerosis
0021-9150,
194
, pp.
e34
e42
.
37.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1987, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
0021-9150,
68
, pp.
27
33
.
38.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis
,
5
, pp.
293
302
.
39.
Lovett
,
J. K.
, and
Rothwell
,
P. M.
, 2003, “
Site of Carotid Plaque Ulceration in Relation to Direction of Blood Flow: An Angiographic and Pathological Study
,”
Cerebrovasc. Dis.
,
16
, pp.
369
375
.
40.
Fukumoto
,
Y.
,
Hiro
,
T.
,
Fujii
,
T.
,
Hashimoto
,
G.
,
Fujimura
,
T.
,
Yamada
,
J.
,
Okamura
,
T.
, and
Matsuzaki
,
M.
, 2008, “
Localized Elevation of Shear Stress is Related To Coronary Plaque Rupture: A 3-Dimensional Intravascular Ultrasound Study With In-Vivo Color Mapping of Shear Stress Distribution
,”
J. Am. Coll. Cardiol.
0735-1097,
51
, pp.
645
50
.
41.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
42.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
, 1993, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions, A Structural Analysis With Histopathological Correlation
,”
Circulation
0009-7322,
87
, pp.
1179
1187
.
You do not currently have access to this content.