Computational fluid dynamics (CFD) studies provide a valuable tool for evaluating the role of hemodynamics in vascular diseases such as cerebral aneurysms and atherosclerosis. However, such models necessarily only include isolated segments of the vasculature. In this work, we evaluate the influence of geometric approximations in vascular anatomy on hemodynamics in elastase induced saccular aneurysms in rabbits. One representative high aspect ratio (AR—height/neck width) aneurysm and one low AR aneurysm were created at the origin of the right common carotid artery in two New Zealand white rabbits. Three-dimensional (3D) reconstructions of the aneurysm and surrounding arteries were created using 3D rotational angiographic data. Five models with varying extents of neighboring vasculature were created for both the high and low AR cases. A reference model included the aneurysm sac, left common carotid artery (LCCA), aortic arch, and downstream trifurcation/quadrification. Three-dimensional, pulsatile CFD studies were performed and streamlines, wall shear stress (WSS), oscillatory shear index, and cross sectional velocity were compared between the models. The influence of the vascular domain on intra-aneurysmal hemodynamics varied between the low and high AR cases. For the high AR case, even a simple model including only the aneurysm, a small section of neighboring vasculature, and simple extensions captured the main features of the steamline and WSS distribution predicted by the reference model. However, the WSS distribution in the low AR case was more strongly influenced by the extent of vasculature. In particular, it was necessary to include the downstream quadrification and upstream LCCA to obtain good predictions of WSS. The findings in this work demonstrate the accuracy of CFD results can be compromised if insufficient neighboring vessels are included in studies of hemodynamics in elastase induced rabbit aneurysms. Consideration of aspect ratio, hemodynamic parameters of interest, and acceptable magnitude of error when selecting the vascular domain will increase reliability of the results while decreasing computational time.

1.
van Gijn
,
J.
, and
Rinkel
,
G. J.
, 2001, “
Subarachnoid Heamorrhage: Diagnosis, Cause and Management
,”
Brain
0006-8950,
124
, pp.
249
278
.
2.
Kayembe
,
K. N.
,
Sasahara
,
M.
, and
Hazama
,
F.
, 1984, “
Cerebral Aneurysms and Variations in the Circle of Willis
,”
Stroke
0039-2499,
15
(
5
), pp.
846
850
.
3.
Steiger
,
H. J.
, 1990, “
Pathophysiology of Development and Rupture of Cerebral Aneurysms
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
48
, pp.
1
57
.
4.
Jou
,
L. D.
,
Wong
,
G.
,
Dispensa
,
B.
,
Lawton
,
M. T.
,
Higashida
,
R. T.
,
Young
,
W. L.
, and
Saloner
,
D.
, 2005, “
Correlation Between Lumenal Geometry Changes and Hemodynamics in Fusiform Intracranial Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
(
9
), pp.
2357
2363
.
5.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
, 2007, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
0039-2499,
38
(
6
), pp.
1924
1931
.
6.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
,
Rodway
,
N. V.
,
Gobin
,
A.
, and
Rittgers
,
S. E.
, 2001, “
Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anastomoses: An In Vivo Model Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
464
473
.
7.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
(
21
), pp.
2035
2042
.
8.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
, 2005, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
(
10
), pp.
2550
2559
.
9.
Hassan
,
T.
,
Timofeev
,
E. V.
,
Saito
,
T.
,
Shimizu
,
H.
,
Ezura
,
M.
,
Matsumoto
,
Y.
,
Takayama
,
K.
,
Tominaga
,
T.
, and
Takahashi
,
A.
, 2005, “
A Proposed Parent Vessel Geometry-Based Categorization of Saccular Intracranial Aneurysms: Computational Flow Dynamics Analysis of the Risk Factors for Lesion Rupture
,”
J. Neurosurg.
0022-3085,
103
(
4
), pp.
662
680
.
10.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
, 2004, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
0039-2499,
35
(
11
), pp.
2500
2505
.
11.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
, 2003, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
(
4
), pp.
559
566
.
12.
Zakaria
,
H.
,
Robertson
,
A. M.
, and
Kerber
,
C.
, 2008, “
A Parametric Model for Studies of Flow in Arterial Bifurcations
,”
Ann. Biomed. Eng.
0090-6964,
36
(
9
), pp.
1515
1530
.
13.
Fukuda
,
S.
,
Hashimoto
,
N.
,
Naritomi
,
H.
,
Nagata
,
I.
,
Nozaki
,
K.
,
Kondo
,
S.
,
Kurino
,
M.
, and
Kikuchi
,
H.
, 2000, “
Prevention of Rat Cerebral Aneurysm Formation by Inhibition of Nitric Oxide Synthase
,”
Circulation
0009-7322,
101
(
21
), pp.
2532
2538
.
14.
Kondo
,
S.
,
Hashimoto
,
N.
,
Kikuchi
,
H.
,
Hazama
,
F.
,
Nagata
,
I.
,
Kataoka
,
H.
, and
Macdonald
,
R. L.
, 1997, “
Cerebral Aneurysms Arising at Nonbranching Sites: An Experimental Study
,”
Stroke
0039-2499,
28
(
2
), pp.
398
404
.
15.
Roach
,
M. R.
, 1978, “
A Model Study of Why Some Intracranial Aneurysms Thrombose but Others Rupture
,”
Stroke
0039-2499,
9
(
6
), pp.
583
587
.
16.
Short
,
J. G.
,
Fujiwara
,
N. H.
,
Marx
,
W. F.
,
Helm
,
G. A.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
, 2001, “
Elastase-Induced Saccular Aneurysms in Rabbits: Comparison of Geometric Features With Those of Human Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
22
(
10
), pp.
1833
1837
.
17.
Zakaria
,
H.
,
Kallmes
,
D. F.
,
Kadirvel
,
R.
,
Ding
,
Y. H.
,
Dai
,
D.
,
Lewis
,
D. A.
, and
Robertson
,
A. M.
, 2006, “
Similar Hemodynamic Features in Elastase-Induced Rabbit Saccular Aneurysms Compared to Those of Human Aneurysms
,”
Proceedings of the World Congress of Biomechanics
,
Munich, Germany
, p.
S366
.
18.
Altes
,
T. A.
,
Cloft
,
H. J.
,
Short
,
J. G.
,
DeGast
,
A.
,
Do
,
H. M.
,
Helm
,
G. A.
, and
Kallmes
,
D. F.
, 2000, “
1999 ARRS Executive Council Award. Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices. American Roentgen Ray Society
,”
AJR, Am. J. Roentgenol.
0361-803X,
174
(
2
), pp.
349
354
.
19.
Ding
,
Y. H.
,
Dai
,
D.
,
Lewis
,
D. A.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
, 2005, “
Angiographic and Histologic Analysis of Experimental Aneurysms Embolized With Platinum Coils, Matrix, and Hydrocoil
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
(
7
), pp.
1757
1763
.
20.
Sadasivan
,
C.
,
Cesar
,
L.
,
Seong
,
J.
,
Rakian
,
A.
,
Hao
,
Q.
,
Tio
,
F. O.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 2009, “
An Original Flow Diversion Device for the Treatment of Intracranial Aneurysms: Evaluation in the Rabbit Elastase-Induced Model
,”
Stroke
0039-2499,
40
(
3
), pp.
952
958
.
21.
Seong
,
J.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 2007, “
In Vitro Evaluation of Flow Divertors in an Elastase-Induced Saccular Aneurysm Model in Rabbit
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
6
), pp.
863
872
.
22.
Mangrum
,
W. I.
,
Farassati
,
F.
,
Kadirvel
,
R.
,
Kolbert
,
C. P.
,
Raghavakaimal
,
S.
,
Dai
,
D.
,
Ding
,
Y. H.
,
Grill
,
D.
,
Khurana
,
V. G.
, and
Kallmes
,
D. F.
, 2007, “
mRNA Expression in Rabbit Experimental Aneurysms: A Study Using Gene Chip Microarrays
,”
AJNR Am. J. Neuroradiol.
0195-6108,
28
(
5
), pp.
864
869
.
23.
Kadirvel
,
R.
,
Ding
,
Y. H.
,
Dai
,
D.
,
Lewis
,
D. A.
,
Raghavakaimal
,
S.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
, 2008, “
Gene Expression Profiling of Experimental Saccular Aneurysms Using Deoxyribonucleic Acid Microarrays
,”
AJNR Am. J. Neuroradiol.
0195-6108,
29
(
8
), pp.
1566
1569
.
24.
Mohan
,
S.
,
Mohan
,
N.
,
Valente
,
A. J.
, and
Sprague
,
E. A.
, 1999, “
Regulation of Low Shear Flow-Induced HAEC VCAM-1 Expression and Monocyte Adhesion
,”
Am. J. Physiol.
0002-9513,
276
(
5 Pt 1
), pp.
C1100
C1107
.
25.
Kadirvel
,
R.
,
Ding
,
Y. -H.
,
Dai
,
D.
,
Zakaria
,
H.
,
Robertson
,
A. M.
,
Danielson
,
M. A.
,
Lewis
,
D. A.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
, 2007, “
The Influence of Hemodynamic Forces on Biomarkers in the Walls of Elastase-Induced Aneurysms in Rabbits
,”
Neuroradiology
0028-3940,
49
(
12
), pp.
1041
1053
.
26.
Ujiie
,
H.
,
Tamano
,
Y.
,
Sasaki
,
K.
, and
Hori
,
T.
, 2001, “
Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm?
,”
Neurosurgery
0148-396X,
48
(
3
), pp.
495
503
.
27.
Sadatomo
,
T.
,
Yuki
,
K.
,
Migita
,
K.
,
Taniguchi
,
E.
,
Kodama
,
Y.
, and
Kurisu
,
K.
, 2008, “
Morphological Differences Between Ruptured and Unruptured Cases in Middle Cerebral Artery Aneurysms
,”
Neurosurgery
0148-396X,
62
(
3
), pp.
602
609
.
28.
Weir
,
B.
,
Amidei
,
C.
,
Kongable
,
G.
,
Findlay
,
J. M.
,
Kassell
,
N. F.
,
Kelly
,
J.
,
Dai
,
L.
, and
Karrison
,
T. G.
, 2003, “
The Aspect Ratio (Dome/Neck) of Ruptured and Unruptured Aneurysms
,”
J. Neurosurg.
0022-3085,
99
(
3
), pp.
447
451
.
29.
Ujiie
,
H.
,
Tachibana
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
, 1999, “
Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
45
(
1
), pp.
119
130
.
30.
Ding
,
Y. H.
,
Dai
,
D.
,
Lewis
,
D. A.
,
Danielson
,
M. A.
,
Kadirvel
,
R.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
, 2006, “
Long-Term Patency of Elastase-Induced Aneurysm Model in Rabbits
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
(
1
), pp.
139
141
.
31.
Kallmes
,
D. F.
,
Fujiwara
,
N. H.
,
Yuen
,
D.
,
Dai
,
D.
, and
Li
,
S. T.
, 2003, “
A Collagen-Based Coil for Embolization of Saccular Aneurysms in a New Zealand White Rabbit Model
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
(
4
), pp.
591
596
.
32.
Zamir
,
M.
, 2000,
The Physics of Pulsatile Flow
,
Springer
,
New York
.
33.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
, 2002, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
378
387
.
34.
Nerem
,
R. M.
,
Rumberger
,
J. A.
, Jr.
,
Gross
,
D. R.
,
Hamlin
,
R. L.
, and
Geiger
,
G. L.
, 1974, “
Hot-Film Anemometer Velocity Measurements of Arterial Blood Flow Horses
,”
Circ. Res.
0009-7330,
34
(
2
), pp.
193
203
.
35.
Heywood
,
J. G.
,
Rannacher
,
R.
, and
Turek
,
S.
, 1996, “
Artificial Boundaries and Flux and Pressure Conditions for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
22
(
5
), pp.
325
352
.
36.
Gresho
,
P. M.
, 1991, “
Some Current CFD Issues Relevant to the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
87
(
2–3
), pp.
201
252
.
37.
Leone
,
J. M.
, and
Gresho
,
P. M.
, 1981, “
Finite Element Simulations of Steady, Two-Dimensional, Viscous Incompressible Flow Over a Step
,”
J. Comput. Phys.
0021-9991,
41
(
1
), pp.
167
191
.
38.
Zamir
,
M.
, 1977, “
Shear Forces and Blood Vessel Radii in the Cardiovascular System
,”
J. Gen. Physiol.
0022-1295,
69
(
4
), pp.
449
461
.
39.
Galdi
,
G.
, 2008, “
Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics
,”
Hemodynamical Flows: Modeling, Analysis and Simulation, Oberwolfach Seminars
,
G. P.
Galdi
,
R.
Rannacher
,
A. M.
Robertson
, and
S.
Turek
, eds.,
Birkhäuser
,
Boston, MA
.
40.
Kučera
,
P.
, and
Skalák
,
Z.
, 1998, “
Local Solutions to the Navier–Stokes Equations With Mixed Boundary Conditions
,”
Acta Appl. Math.
0167-8019,
54
(
3
), pp.
275
288
.
41.
Womersley
,
J. R.
, 1955, “
Method for the Calculation of Velocity, Rate Of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
0022-3751,
127
(
3
), pp.
553
563
.
42.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
43.
Meng
,
H.
,
Swartz
,
D. D.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Kolega
,
J.
,
Metaxa
,
E. M.
,
Szymanski
,
M. P.
,
Yamamoto
,
J.
,
Sauvageau
,
E.
, and
Levy
,
E. I.
, 2006, “
A Model System for Mapping Vascular Responses to Complex Hemodynamics at Arterial Bifurcations In Vivo
,”
Neurosurgery
0148-396X,
59
(
5
), pp.
1094
1100
.
44.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
, 2006, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
, pp.
1703
1709
.
45.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
483
497
.
46.
Robertson
,
A. M.
,
Sequeira
,
A.
, and
Kameneva
,
M. V.
, 2008, “
Hemorheology
,”
Hemodynamical Flows: Modeling, Analysis and Simulation
,
G. P.
Galdi
,
R.
Rannacher
,
A. M.
Robertson
, and
S.
Turek
, eds.,
Birkhäuser
,
Boston, MA
.
You do not currently have access to this content.