Disk herniation is often considered a cumulative injury in that repetitive stress on the posterior annulus can result in the nucleus pulposus penetrating the annulus fibrosus and eventually extruding posteriorly. Further, it has been documented that the nucleus pulposus works its way through the annulus through clefts, which form as a result of repetitive tensile strain. The annulus fibrosus is viscoelastic in nature and therefore could express different mechanical responses to applied strain at varying rates. Other viscoelastic tissues, including tendons and ligaments, have shown altered mechanical responses to different rates of applied strain, but the response of the annulus to varying rates of strain is largely unknown. The present study examined the mechanical properties of 20 two-layered samples of porcine annulus fibrosus tissue at three distinct rates of applied 20% biaxial strain (20% strain over 20 s (slow), over 10 s (medium), and over 5 s (fast)); these three rates are considered applicable to nontraumatic loading. No differences in the stiffness or maximum stress in each of the two directions of applied strain were observed between the three strain rates. Specifically, the average (standard deviation) moduli calculated at the fast, medium, and slow rates, respectively, in the axial direction were 7.42 MPa (6.06), 7.77 MPa (6.61), and 7.63 MPa (6.67) and 8.22 MPa (8.4), 8.63 MPa (9.00), and 8.49 MPa (8.69) in the circumferential direction. The maximum stress values reached during the fast, medium, and slow rates, respectively, in the axial direction were 0.40 (0.36) MPa, 0.40 (0.36) MPa, and 0.39 (0.35) MPa and 0.45 (0.47) MPa, 0.44 (0.46) MPa, and 0.43 (0.46) MPa in the circumferential direction. At submaximal strain magnitudes over a range of nontraumatic rates likely to result in clefts in the annulus and potentially leading to disk herniation, any strain rate dependence is not significant.

1.
Shirazi-Adl
,
A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
, 1984, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression. A Three-Dimensional Nonlinear Finite Element Study
,”
Spine
0362-2436,
9
, pp.
120
134
.
2.
Stokes
,
I. A.
, 1987, “
Surface Strain on Human Intervertebral Discs
,”
J. Orthop. Res.
0736-0266,
5
, pp.
348
355
.
3.
McNally
,
D. S.
, and
Adams
,
M. A.
, 1992, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
0362-2436,
17
, pp.
66
73
.
4.
Edwards
,
W. T.
,
Ordway
,
N. R.
,
Zheng
,
Y.
,
McCullen
,
G.
,
Han
,
Z.
, and
Yuan
,
H. A.
, 2001, “
Peak Stresses Observed in the Posterior Lateral Annulus
,”
Spine
0362-2436,
26
, pp.
1753
1759
.
5.
van Deursen
,
D. L.
,
Snijders
,
C. J.
,
Kingma
,
I.
, and
van Dieen
,
J. H.
, 2001, “
In Vitro Torsion-Induced Stress Distribution Changes in Porcine Intervertebral Discs
,”
Spine
0362-2436,
26
, pp.
2582
2586
.
6.
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 2001, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, pp.
28
37
.
7.
Pezowicz
,
C. A.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
, 2005, “
Intralamellar Relationships Within the Collagenous Architecture of the Annulus Fibrosus Imaged in Its Fully Hydrated State
,”
J. Anat.
0021-8782,
207
, pp.
299
312
.
8.
Tampier
,
C.
,
Drake
,
J. D.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 2007, “
Progressive Disc Herniation: An Investigation of the Mechanism Using Radiological, Histochemical, and Microscopic Dissection Techniques on a Porcine Model
,”
Spine
0362-2436,
32
, pp.
2869
2874
.
9.
Haut
,
R. C.
, 1983, “
Age-Dependent Influence of Strain Rate on the Tensile Failure of Rat-Tail Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
296
299
.
10.
Wren
,
T. A. L.
,
Yerby
,
S. A.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
, 2001, “
Mechanical Properties of the Human Achilles Tendon
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, pp.
245
251
.
11.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
, and
Elliott
,
D. M.
, 2003, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
726
731
.
12.
Yamamoto
,
N.
, and
Hayashi
,
K.
, 1998, “
Mechanical Properties of Rabbit Patellar Tendon at High Strain Rate
,”
Biomed. Mater. Eng.
0959-2989,
8
, pp.
83
90
.
13.
Noyes
,
F. R.
,
DeLucas
,
J. L.
, and
Torvik
,
P. J.
, 1974, “
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
, pp.
236
253
.
14.
Crowninshield
,
R. D.
, and
Pope
,
M. H.
, 1976, “
The Strength and Failure Characteristics of Rat Medial Collateral Ligaments
,”
J. Trauma
0022-5282,
16
, pp.
99
105
.
15.
Woo
,
S. L.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
, 1990, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
0736-0266,
8
, pp.
712
721
.
16.
Ticker
,
J. B.
,
Bigliani
,
L. U.
, and
Soslowsky
,
L. J.
, 1996, “
Inferior Glenohumeral Ligament: Geometric and Strain-Rate Dependent Properties
,”
J. Shoulder Elbow Surg.
1058-2746,
5
, pp.
269
279
.
17.
Danto
,
M. I.
, and
Woo
,
S. L.
, 1993, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
0736-0266,
11
, pp.
58
67
.
18.
Haut
,
R. C.
, and
Little
,
R. W.
, 1969, “
Rheological Properties of Canine Anterior Cruciate Ligaments
,”
J. Biomech.
0021-9290,
2
, pp.
289
298
.
19.
Crisco
,
J. J.
,
Moore
,
D. C.
, and
McGovern
,
R. D.
, 2002, “
Strain-Rate Sensitivity of the Rabbit MCL Diminishes at Traumatic Loading Rates
,”
J. Biomech.
0021-9290,
35
, pp.
1379
1385
.
20.
Blevins
,
F. T.
,
Hecker
,
A. T.
,
Bigler
,
G. T.
,
Boland
,
A. L.
, and
Hayes
,
W. C.
, 1994, “
The Effects of Donor Age and Strain Rate on the Biomechanical Properties of Bon-Patellar Tendon-Bone Allographs
,”
Am. J. Sports Med.
0363-5465,
22
, pp.
328
333
.
21.
Kasra
,
M.
,
Parnianpour
,
M.
,
Shirazi_Adl
,
A.
,
Wang
,
J. L.
, and
Grynpas
,
M. D.
, 2004, “
Effect of Strain Rate on Tensile Properties of Sheep Disc Annulus Fibrosus
,”
Technol. Health Care
0928-7329,
12
, pp.
333
342
.
22.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1997, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
0736-0266,
15
, pp.
814
819
.
23.
Oxland
,
T. R.
,
Panjabi
,
M. M.
,
Southern
,
E. P.
, and
Duranceau
,
J. S.
, 1991, “
An Anatomic Basis for Spinal Instability: A Porcine Trauma Model
,”
J. Orthop. Res.
0736-0266,
9
, pp.
452
462
.
24.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 1999, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
0895-0385,
12
, pp.
415
423
.
25.
Parkinson
,
R. J.
, and
Callaghan
,
J. P.
, 2009, “
The Role of Dynamic Flexion in Spine Injury Is Altered by Increasing Dynamic Load Magnitude
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
24
, pp.
148
154
.
26.
Klein
,
J. A.
, and
Hukins
,
D. W. L.
, 1982, “
Collagen Fiber Orientation in the Annulus Fibrosus of Intervertebral-Disk During Bending and Torsion Measured by X-Ray-Diffraction
,”
Biochim. Biophys. Acta
0006-3002,
719
, pp.
98
101
.
27.
Brinckmann
,
P.
,
Biggemann
,
M.
, and
Hilweg
,
D.
, 1989, “
Fatigue Fracture of Human Lumbar Vertebrae
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
3
, pp.
S1
S22
.
28.
Dolan
,
P.
,
Earley
,
M.
, and
Adams
,
M. A.
, 1994, “
Bending and Compressive Stresses Acting on the Lumbar Spine During Lifting Activities
,”
J. Biomech.
0021-9290,
27
, pp.
1237
1248
.
29.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 1997, “
Dynamic Loading Affects the Mechanical Properties and Failure Site of Porcine Spines
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
, pp.
301
305
.
30.
Lundin
,
O.
,
Ekstrom
,
L.
,
Hellstrom
,
M.
,
Holm
,
S.
, and
Sward
,
L.
, 1998, “
Injuries in the Adolescent Porcine Spine Exposed to Mechanics Compression
,”
Spine
0362-2436,
23
, pp.
2574
2579
.
31.
Gunning
,
J. L.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 2001, “
Spinal Posture and Prior Loading History Modulate Compressive Strength and Type of Failure in the Spine: A Biomechanical Study Using a Porcine Cervical Spine Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, pp.
471
480
.
32.
Grashow
,
J. S.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
, 2006, “
Biaxial Stress-Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
315
325
.
33.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
, 2000, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
0362-2436,
25
, pp.
662
669
.
34.
Nuckley
,
D. J.
,
Hertsted
,
S. M.
,
Eck
,
M. P.
, and
Ching
,
R. P.
, 2005, “
Effect of Displacement Rate on the Tensile Mechanics of Pediatric Cervical Functional Spinal Units
,”
J. Biomech.
0021-9290,
38
, pp.
2266
2275
.
35.
Elias
,
P. Z.
,
Nuckley
,
D. J.
, and
Ching
,
R. P.
, 2006, “
Effect of Loading Rate on the Compressive Mechanics of the Immature Baboon Cervical Spine
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
18
23
.
36.
Brown
,
S. H. M.
,
Gregory
,
D. E.
, and
McGill
,
S. M.
, 2008, “
Vertebral End-Plate Fractures as a Result of High Rate Pressure Loading in the Nucleus of the Young Porcine Spine
,”
J. Biomech.
0021-9290,
41
, pp.
122
127
.
37.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
, 2004, “
Biaxial Testing of Human Annulus Fibrosus and Its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1231
1242
.
38.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
, “
A Comparison of Uniaxial and Biaxial Mechanical Properties of the Annulus Fibrosus: A Porcine Model
,”
Spine J.
, submitted.
39.
Marras
,
W. S.
,
Lavender
,
S. A.
,
Ferguson
,
S. A.
,
Splittstoesser
,
R. E.
,
Yang
,
G.
, and
Schabo
,
P.
, 2010, “
Instrumentation for Measuring Dynamic Spinal Load Moment Exposures in the Workplace
,”
J. Electromyogr Kinesiol
1050-6411,
20
, pp.
1
9
.
You do not currently have access to this content.